372-20-3Relevant articles and documents
Process development and manufacture of potassium 2-fluoro-6-hydroxyphenyltrifluoroborate
Pawar, Lokesh,Jayaramaiah, Ramesh,Krishnan, Baburaj,Arunachalampillai, Athimoolam,Chen, Ying,Parsons, Andrew T.,Robinson, Jo Anna,Tedrow, Jason S.
, p. 4266 - 4270 (2019)
The development of a phase-appropriate manufacturing-scale synthesis of potassium 2-fluoro-6-hydroxyphenyltrifluoroborate was achieved. Investigations into improving the yield and robustness indicated that pH of the reaction medium is a critical process parameter. Additional development resulted in replacing tartaric acid with citric acid, resulting in improved process robustness and enabling scale-up to >10 kg.
A mild and practical method for deprotection of aryl methyl/benzyl/allyl ethers with HPPh2andtBuOK
Pan, Wenjing,Li, Chenchen,Zhu, Haoyin,Li, Fangfang,Li, Tao,Zhao, Wanxiang
, p. 7633 - 7640 (2021/09/22)
A general method for the demethylation, debenzylation, and deallylation of aryl ethers using HPPh2andtBuOK is reported. The reaction features mild and metal-free reaction conditions, broad substrate scope, good functional group compatibility, and high chemical selectivity towards aryl ethers over aliphatic structures. Notably, this approach is competent to selectively deprotect the allyl or benzyl group, making it a general and practical method in organic synthesis.
Method for hydrolyzing diarylether compound to generate aryl phenol compound
-
Paragraph 0146-0149, (2021/09/29)
The invention discloses a method for hydrolyzing a diarylether compound to generate an arylphenol compound. According to the method, visible light is utilized to excite a photosensitizer for catalysis. In a reaction solvent, the raw material in the formula (1) breaks a C (sp2)-O bond under the auxiliary action of acid, and hydrolysis is performed to obtain the bimolecular aryl phenol compounds in the formula (3) and the formula (4). The method can catalyze the reaction at room temperature, is green and environment-friendly, and is easy to operate; the universality is wide, the reaction yield is relatively high, and the tolerance of functional groups is strong; the synthesis method not only can realize small-scale hydrolysis conversion of various diarylether compounds, but also can realize hydrolysis of herbicidal ether, triclosan and a lignin template substrate, and even can realize large-scale hydrolysis of triclosan and the lignin template substrate to realize gram-level degradation. A new strategy is provided for recovering phenol derivatives through lignin hydrolysis, degrading pesticides and purifying wastewater containing a degerming agent or herbicide. The method has wide application prospect and use value.
Synthesis method of fluorine-containing phenol structure compound
-
Paragraph 0021-0022, (2021/03/13)
The invention discloses a synthesis method of a fluorine-containing phenol structure compound, and belongs to the technical field of chemical synthesis. Fluorine-containing benzoic acid is subjected to a one-pot reaction in a solvent under the action of alkali to obtain fluorine-containing phenate, and fluorine-containing phenol is obtained after acid regulation and dissociation. The synthesis method has the advantages of rich, cheap and easily available raw material structure, short synthesis steps, mild reaction conditions, simple and convenient operation, high synthesis yield, good productquality, wide application range and the like, and is suitable for simple and efficient synthesis of various high-value and high-purity fluorine-containing phenol compounds.
Nickel Hydride Catalyzed Cleavage of Allyl Ethers Induced by Isomerization
Kathe, Prasad M.,Berkefeld, Andreas,Fleischer, Ivana
supporting information, p. 1629 - 1632 (2021/02/09)
This report discloses the deallylation of O - and N -allyl functional groups by using a combination of a Ni-H precatalyst and excess Bronsted acid. Key steps are the isomerization of the O - or N -allyl group through Ni-catalyzed double-bond migration followed by Bronsted acid induced O/N-C bond hydrolysis. A variety of functional groups are tolerated in this protocol, highlighting its synthetic value.
Nickel-catalyzed removal of alkene protecting group of phenols, alcohols via chain walking process
Meng, Chenkai,Niu, Haolin,Ning, Juehan,Wu, Wengang,Yi, Jun
, (2020/02/04)
An efficient nickel-catalyzed removal of alkene protection group under mild condition with high functional group tolerance through chain walking process has been established. Not only phenolic ethers, but also alcoholic ethers can be tolerated with the retention of stereocenter adjacent to hydroxyl group. The new reaction brings the homoallyl group into a start of new type of protecting group.
Pyrenediones as versatile photocatalysts for oxygenation reactions with: In situ generation of hydrogen peroxide under visible light
Zhang, Yuannian,Yang, Xin,Tang, Haidi,Liang, Dong,Wu, Jie,Huang, Dejian
supporting information, p. 22 - 27 (2020/01/13)
Pyrenediones (PYDs) are efficient photocatalysts for three oxygenation reactions: Epoxidation of electron deficient olefins, oxidative hydroxylation of organoborons, and oxidation of sulfides via in situ generation of H2O2 under visible light irradiation, using oxygen as a terminal oxidant and IPA as a solvent and a hydrogen donor.
Quaternary ammonium hydroxide-functionalized g-C3N4 catalyst for aerobic hydroxylation of arylboronic acids to phenols
Muhammad, Ibrahim,Mannathan, Subramaniyan,Sasidharan, Manickam
, p. 1470 - 1476 (2020/07/13)
A new and efficient metal-free approach toward the synthesis of phenols via an aerobic hydroxylation of arylboronic acids by using a novel quaternary ammonium hydroxide g-C3N4 catalyst has been described. The functionalized quaternary ammonium hydroxide (g-C3N4-OH) has been prepared from graphitic carbon nitride (g-C3N4) scaffold by converting the residual –NH2 and –NH groups to quaternary methyl ammonium iodide by performing a methylation reaction with methyl iodide followed by ion-exchange with 0.1 N KOH or anion exchange resin Amberlyst A26 (OH- form) by post-synthetic modification. The resultant g-C3N4-OH was characterized by XRD, FTIR, field-emission scanning electron microscope (FESEM), high-resolution transmission electron microscope (HRTEM), N2 adsorption/desorption isotherms, and acid–base titration. Tested as solid-base catalysts, the g-C3N4-OH showed excellent catalytic activity in the aerobic hydroxylation reaction by converting a variety of arylboronic acids to the corresponding phenols in high yields. More importantly, the g-C3N4-OH solid-base has been successfully reused four times with the minor loss of initial catalytic activity (10.5percent).
Method for preparing alcohol and phenol through aerobic hydroxylation reaction of boric acid derivative in absence of photocatalyst
-
Paragraph 0025-0028; 0030-0032, (2020/01/25)
The invention discloses a method for preparing alcohol and phenol through aerobic hydroxylation reaction of a boric acid derivative in the absence of a photocatalyst, wherein the boric acid derivativeis aryl boronic acid or alkyl boronic acid, and the corresponding target compounds are respectively a phenol-based compound and an alcohol-based compound. According to the method, by using a boric acid derivative as a reaction substrate, an additive is added under a solvent condition, and a hydroxylation reaction is performed under aerobic and illumination conditions to obtain a corresponding target compound. According to the invention, the new strategy is provided for the synthesis of phenols through aerobic hydroxylation of aryl boronic acid without a photocatalyst; the catalyst-free aerobic hydroxylation method for photocatalysis of aryl boronic acid or alkyl boronic acid by using triethylamine as an additive is firstly disclosed; and the new method has advantages of photocatalyst-freecondition, wide substrate range and good functional group compatibility.
Method of removing protective groups of olefins under catalytic action of nickel
-
Paragraph 0223-0226, (2019/10/04)
The invention relates to a method of removing protective groups of olefins under the catalytic action of nickel. The method comprises following steps: dissolving olefin containing compounds into an organic solvent, carrying out reactions in the presence of a catalyst, organic ligands, bis(pinacolato)diboron, alkalis, alcohols, and water, wherein the catalyst contains nickel; after reactions, adding excess hydrochloric acid solution (1M) to adjust the pH to the acidic region, stirring the solution until the solution becomes clear; adding water and ethyl acetate to carry out extraction; washing the organic phase by saturated brine, drying the organic phase by anhydrous sodium sulfate, carrying out condensation, and adopting a 200-300 mesh silica gel column to carry out chromatographic separation to obtain compounds that contains alcohols or phenol. The provide method has the advantages that the adopted chemical reagents are common, the primary alkyl halide protective groups of olefins can be removed efficiently, and the method has a good application prospect in the field of organic synthesis and good industrial potential.