38418-10-9Relevant articles and documents
N-Aroylbenzotriazoles as Efficient Reagents for o-Aroylation in Absence of Organic Solvent
Hahnvajanawong, Viwat,Phungpis, Baramee
, p. 2671 - 2674 (2021/10/25)
N-Aroylbenzotriazoles have been shown to be efficient reagents for esterification in the absence of organic solvent. Grinding of N-aroylbenzoytiazoles with twofold excess of alcohols for a couple of hours at room temperature gave corresponding esters in high percentage of yields.
Iodine-catalyzed synthesis of β-uramino crotonic esters as well as oxidative esterification of carboxylic acids in choline chloride/urea: a desirable alternative to organic solvents
Moayyed, Mohammadesmaeil,Saberi, Dariush
, p. 445 - 455 (2020/09/07)
Abstract: Iodine-mediated selective synthesis of β-uramino crotonic esters was achieved via the reaction of β-dicarbonyls and urea at room temperature. Choline chloride/urea mixture, as an eco-friendly, cheap, non-toxic, and recyclable deep eutectic solvent (DES), was employed as sustainable media as well as reagent at the same time in these transformations. Some derivatives of β-uramino crotonic esters were synthesized with good to high yields without a tedious work-up. The process could be done to synthesize the above-mentioned compounds in gram scale. Moreover, oxidative cross-esterification of carboxylic acids with alkyl benzenes was carried out in the above-mentioned DES by the employment of tetrabutylammonium iodide (TBAI) as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant at 80?°C. DES/TBAI system was reused up to five consecutive times. Graphic abstract: Iodine-catalyzed C–N and C–O bond formation in choline chloride/urea as a green solvent under the mild reaction conditions. Providing the clean procedure toward synthesis of β-uramino crotonic esters and benzylic esters.[Figure not available: see fulltext.].
Catalytic conversion of ketones to esters: Via C(O)-C bond cleavage under transition-metal free conditions
Subaramanian, Murugan,Ramar, Palmurukan M.,Rana, Jagannath,Gupta, Virendra Kumar,Balaraman, Ekambaram
supporting information, p. 8143 - 8146 (2020/09/09)
The catalytic conversion of ketones to esters via C(O)-C bond cleavage under transition-metal free conditions is reported. This catalytic process proceeds under solvent-free conditions and offers an easy operational procedure, broad substrate scope with excellent selectivity, and reaction scalability. This journal is
Bu 4 NI-Catalyzed C-C Bond Cleavage and Oxidative Esteri??cation of Allyl Alcohols with Toluene Derivatives
Chen, Yaoyao,Cui, Yongmei,Jia, Xueshun,Li, Chengliang,Li, Jian,Sun, Mingming
, p. 3667 - 3674 (2019/09/30)
A novel oxidative esterification of 1-arylprop-2-en-1-ols with toluene derivatives catalyzed by tetrabutylammonium iodide (TBAI) is reported. The optimization of the reaction conditions illustrates that each of experiment parameters including the catalyst, solvent, and oxidant is significant for present oxidative functionalization. This metal-free protocol has a broad substrate scope including the halogen groups for further functionalization and enriches the reactivity profile of allyl alcohol and toluene derivatives. In addition, this protocol represents a new transformation of allyl alcohol involving C-C bond cleavage and C-O bond forming.
Base-Promoted Amidation and Esterification of Imidazolium Salts via Acyl C-C bond Cleavage: Access to Aromatic Amides and Esters
Karthik, Shanmugam,Muthuvel, Karthick,Gandhi, Thirumanavelan
, p. 738 - 751 (2019/01/24)
Imidazolium salts have been effectively employed as suitable acyl transfer agents in amidation and esterification in organic synthesis. The weak acyl C(O)-C imidazolium bond was exploited to generate acyl electrophiles, which further react with amines and alcohols to afford amides and esters. The broad substrate scope of anilines and benzylic amines and base-promoted conditions are the benefits of this route. Interestingly, phenol, benzylic alcohols, and a biologically active alcohol can also be subjected to esterification under the optimized conditions.
Esterification of Tertiary Amides by Alcohols Through C?N Bond Cleavage over CeO2
Toyao, Takashi,Nurnobi Rashed, Md.,Morita, Yoshitsugu,Kamachi, Takashi,Hakim Siddiki,Ali, Md. A.,Touchy,Kon, Kenichi,Maeno, Zen,Yoshizawa, Kazunari,Shimizu, Ken-ichi
, p. 449 - 456 (2018/09/11)
CeO2 has been found to promote ester forming alcoholysis reactions of tertiary amides. The present catalytic system is operationally simple, recyclable, and it does not require additives. The esterification process displays a wide substrate scope (>45 examples; up to 93 % isolated yield). Results of a density functional theory (DFT) study combined with in situ FT-IR observations indicate that the process proceeds through rate limiting addition of a CeO2 lattice oxygen to the carbonyl group of the adsorbed acetamide species with energy barrier of 17.0 kcal/mol. This value matches well with experimental value (17.9 kcal/mol) obtained from analysis of the Arrhenius plot. Further studies by in situ FT-IR and temperature programmed desorption using probe molecules demonstrate that both acidic and basic properties are important, and consequently, CeO2 showed the best performance for the C?N bond cleavage reaction.
Oxidation-Reduction Condensation of Diazaphosphites for Carbon-Heteroatom Bond Formation Based on Mitsunobu Mechanism
Huang, Hai,Kang, Jun Yong
supporting information, p. 544 - 547 (2017/02/10)
An efficient oxidation-reduction condensation reaction of diazaphosphites with various nonacidic pronucleophiles in the presence of DIAD as a weak oxidant has been developed for carbon-heteroatom bond formation. This mild process affords structurally diverse tertiary amines, secondary amines, esters, ethers, and thioethers in moderate to excellent yields. The selective synthesis of secondary amines from primary amines has been achieved. Importantly, a practical application to the synthesis of antiparkinsonian agent piribedil has been demonstrated.
Aliphatic C-H Bond Iodination by a N-Iodoamide and Isolation of an Elusive N-Amidyl Radical
Artaryan, Alexander,Mardyukov, Artur,Kulbitski, Kseniya,Avigdori, Idan,Nisnevich, Gennady A.,Schreiner, Peter R.,Gandelman, Mark
, p. 7093 - 7100 (2017/07/26)
Contrary to C-H chlorination and bromination, the direct iodination of alkanes represents a great challenge. We reveal a new N-iodoamide that is capable of a direct and efficient C-H bond iodination of various cyclic and acyclic alkanes providing iodoalkanes in good yields. This is the first use of N-iodoamide for C-H bond iodination. The method also works well for benzylic C-H bonds, thereby constituting the missing version of the Wohl-Ziegler iodination reaction. Mechanistic details were elucidated by DFT computations, and the N-centered radical derived from the used N-iodoamide, which is the key intermediate in this process, was matrix-isolated in a solid argon matrix and characterized by UV-vis as well as IR spectroscopy.
Esterification of the Primary Benzylic C-H Bonds with Carboxylic Acids Catalyzed by Ionic Iron(III) Complexes Containing an Imidazolinium Cation
Lu, Bing,Zhu, Fan,Sun, Hong-Mei,Shen, Qi
supporting information, p. 1132 - 1135 (2017/03/14)
The first iron-catalyzed esterification of the primary benzylic C-H bonds with carboxylic acids using di-tert-butyl peroxide as an oxidant is achieved by novel ionic iron(III) complexes containing an imidazolinium cation. The use of well-defined, air-stable, and available iron(III) complex in a 5 mol % loading and readily available starting materials with a broad generality and outstanding sterically hindered tolerance renders this methodology a useful alternative to other protocols that are typically employed for the synthesis of benzyl esters.
Reusable ionic liquid-catalyzed oxidative esterification of carboxylic acids with benzylic hydrocarbons via benzylic Csp3-H bond activation under metal-free conditions
Mou, Fen,Sun, Yadong,Jin, Weiwei,Zhang, Yonghong,Wang, Bin,Liu, Zhiqing,Guo, Lei,Huang, Jianbin,Liu, Chenjiang
, p. 23041 - 23045 (2017/07/10)
A metal-free protocol for the direct oxidative esterification of the Csp3-H bond in benzylic hydrocarbons with carboxylic acids using heterocyclic ionic liquid as catalyst has been reported. The catalyst 1-butylpyridinium iodide could be easily recycled and reused for at least four cycles without obvious loss of catalytic activity.