Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6281-96-5

Post Buying Request

6281-96-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6281-96-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6281-96-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,2,8 and 1 respectively; the second part has 2 digits, 9 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 6281-96:
(6*6)+(5*2)+(4*8)+(3*1)+(2*9)+(1*6)=105
105 % 10 = 5
So 6281-96-5 is a valid CAS Registry Number.
InChI:InChI=1/C5H11NO/c1-5(2)3-6-4-7/h4-5H,3H2,1-2H3,(H,6,7)

6281-96-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name N-Isobutylformamide

1.2 Other means of identification

Product number -
Other names N-(2-Methylpropyl)formamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6281-96-5 SDS

6281-96-5Relevant articles and documents

Facile N-Formylation of Amines on Magnetic Fe3O4?CuO Nanocomposites

Datta Khanal, Hari,Mishra, Kanchan,Rok Lee, Yong

, p. 4477 - 4484 (2021/08/30)

A facile, eco-friendly, efficient, and recyclable heterogeneous catalyst is synthesized by immobilizing copper impregnated on mesoporous magnetic nanoparticles. The surface chemistry analysis of Fe3O4?CuO nanocomposites (NCs) by XRD and XPS demonstrates the synergistic effect between Fe3O4 and CuO nanoparticles, providing mass-transfer channels for the catalytic reaction. TEM images clearly indicate the impregnation of CuO onto mesoporous Fe3O4. This hydrothermally synthesized eco-friendly and highly efficient Fe3O4?CuO NCs are applied as a magnetically retrievable heterogeneous catalyst for the N-formylation of wide range of aliphatic, aromatic, polyaromatic and heteroaromatic amines using formic acid as a formylating agent at room temperature. The catalytic activity of the NCs for N-formylation is attributable to the synergistic effect between Fe3O4 and CuO nanoparticles. The N-formylated product is further employed for the synthesis of biologically active quinolone moieties.

Organocatalytic Decarboxylation of Amino Acids as a Route to Bio-based Amines and Amides

Claes, Laurens,Janssen, Michiel,De Vos, Dirk E.

, p. 4297 - 4306 (2019/08/26)

Amino acids obtained by fermentation or recovered from protein waste hydrolysates represent an excellent renewable resource for the production of bio-based chemicals. In an attempt to recycle both carbon and nitrogen, we report here on a chemocatalytic, metal-free approach for decarboxylation of amino acids, thereby providing a direct access to primary amines. In the presence of a carbonyl compound the amino acid is temporarily trapped into a Schiff base, from which the elimination of CO2 may proceed more easily. After evaluating different types of aldehydes and ketones on their activity at low catalyst loadings (≤5 mol%), isophorone was identified as powerful organocatalyst under mild conditions. After optimisation many amino acids with a neutral side chain were converted in 28–99 % yield in 2-propanol at 150 °C. When the reaction is performed in DMF, the amine is susceptible to N-formylation. This consecutive reaction is catalysed by the acidity of the amino acid reactant itself. In this way, many amino acids were efficiently transformed to the corresponding formamides in a one-pot catalytic system.

Production of Formamides from CO and Amines Induced by Porphyrin Rhodium(II) Metalloradical

Zhang, Jiajing,Zhang, Wentao,Xu, Minghui,Zhang, Yang,Fu, Xuefeng,Fang, Huayi

supporting information, p. 6656 - 6660 (2018/05/24)

It is of fundamental importance to transform carbon monoxide (CO) to petrochemical feedstocks and fine chemicals. Many strategies built on the activation of C≡O bond by π-back bonding from the transition metal center were developed during the past decades. Herein, a new CO activation method, in which the CO was converted to the active acyl-like metalloradical, [(por)Rh(CO)]? (por = porphyrin), was reported. The reactivity of [(por)Rh(CO)]? and other rhodium porphyrin compounds, such as (por)RhCHO and (por)RhC(O)NHnPr, and corresponding mechanism studies were conducted experimentally and computationally and inspired the design of a new conversion system featuring 100% atom economy that promotes carbonylation of amines to formamides using porphyrin rhodium(II) metalloradical. Following this radical based pathway, the carbonylations of a series of primary and secondary aliphatic amines were examined, and turnover numbers up to 224 were obtained.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6281-96-5