Welcome to LookChem.com Sign In|Join Free

CAS

  • or

6915-18-0

Post Buying Request

6915-18-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

6915-18-0 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 6915-18-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 6,9,1 and 5 respectively; the second part has 2 digits, 1 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 6915-18:
(6*6)+(5*9)+(4*1)+(3*5)+(2*1)+(1*8)=110
110 % 10 = 0
So 6915-18-0 is a valid CAS Registry Number.

6915-18-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name fumaric acid

1.2 Other means of identification

Product number -
Other names 2-butenedioic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:6915-18-0 SDS

6915-18-0Relevant articles and documents

Catalytic Aerobic Oxidation of Lignocellulose-Derived Levulinic Acid in Aqueous Solution: A Novel Route to Synthesize Dicarboxylic Acids for Bio-Based Polymers

Che, Li,Jiang, Min,Jiang, Yu,Pang, Jifeng,Song, Lei,Wang, Rui,Zhang, Tao,Zhao, Yu,Zheng, Mingyuan,Zhou, Guangyuan,Zhou, Mo

, p. 11588 - 11596 (2021/09/22)

The world is facing grand and ever-increasing pressures on energy and environmental issues. Using carbon-neutral biomass to prepare monomers such as dicarboxylic acids for degradable polymers is of great significance and an urgent but challenging task. Herein, we report a catalytic route for the synthesis of 2-hydroxy-2-methylsuccinic acid, an excellent monomer: e.g., it is able to remarkably enhance the comprehensive properties of polybutylene succinate as shown herein. By catalytic aerobic oxidation of levulinic acid, a bulk platform chemical derived from lignocellulose, the target product was obtained with a very high selectivity of up to ca. 95%. The mild reaction conditions below 100 °C in water and the low-cost reusable heterogeneous catalyst further make the process highly attractive for applications. This process was also found to be effective for the conversion of homologues of levulinic acid to dicarboxylic acids. We studied the C-C bond rearrangement and the roles of catalysts in the reaction that are highly likely involved in a superoxide anion radical mechanism. This study may provide inspiration for the synthesis of bio-based dicarboxylic acids via alternative routes.

Constructing an Acidic Microenvironment by MoS2 in Heterogeneous Fenton Reaction for Pollutant Control

Huang, Kai,Lian, Cheng,Liang, Lihong,Xing, Mingyang,Yan, Qingyun,Yin, Pengcheng,Yu, Haoran,Zhang, Jinlong

supporting information, p. 17155 - 17163 (2021/07/06)

Although Fenton or Fenton-like reactions have been widely used in the environment, biology, life science, and other fields, the sharp decrease in their activity under macroneutral conditions is still a large problem. This study reports a MoS2 cocatalytic heterogeneous Fenton (CoFe2O4/MoS2) system capable of sustainably degrading organic pollutants, such as phenol, in a macroneutral buffer solution. An acidic microenvironment in the slipping plane of CoFe2O4 is successfully constructed by chemically bonding with MoS2. This microenvironment is not affected by the surrounding pH, which ensures the stable circulation of Fe3+/Fe2+ on the surface of CoFe2O4/MoS2 under neutral or even alkaline conditions. Additionally, CoFe2O4/MoS2 always exposes “fresh” active sites for the decomposition of H2O2 and the generation of 1O2, effectively inhibiting the production of iron sludge and enhancing the remediation of organic pollutants, even in actual wastewater. This work not only experimentally verifies the existence of an acidic microenvironment on the surface of heterogeneous catalysts for the first time, but also eliminates the pH limitation of the Fenton reaction for pollutant remediation, thereby expanding the applicability of Fenton technology.

Electrochemical oxidation of amoxicillin on carbon nanotubes and carbon nanotube supported metal modified electrodes

Ferreira, Marta,Kuzniarska-Biernacka, Iwona,Fonseca, António M.,Neves, Isabel C.,Soares, Olívia S.G.P.,Pereira, Manuel F.R.,Figueiredo, José L.,Parpot, Pier

, p. 322 - 331 (2019/07/10)

The electrolysis of amoxicillin (AMX) was carried out on CNT, Pt/CNT and Ru/CNT modified electrodes based on Carbon Toray in 0.1 M NaOH, 0.1 M NaCl and 0.1 M Na2CO3/NaHCO3 buffer (pH 10) media with the aim of studying the significance of two factors, electrode material and pH, on the oxidative degradation and mineralization of AMX. For this purpose, the electrolysis products were identified by HPLC-MS and GC–MS, and quantified by HPLC-UV-RID and IC. The highest carbon mineralization efficiency, corresponding to 30% of the oxidized AMX, was found for Pt/CNT modified electrode in carbonate buffer medium. Regarding to the AMX conversion, the results show that the effect of pH is higher than that of the electrode material. Principal component analysis allowed to determine the experimental parameters vs. product distribution relationship and to elucidate the oxidation pathways for the studied electrodes. The results show that the hydroxylation of the aromatic ring and the nitrogen atom play an important role on the efficient degradation of AMX.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 6915-18-0