Welcome to LookChem.com Sign In|Join Free

CAS

  • or

7007-15-0

Post Buying Request

7007-15-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

7007-15-0 Usage

General Description

The chemical (2-amino-5-methylphenyl)(2-bromophenyl)methanone, also known as 5-methyl-2-amino-2'-bromobenzophenone, is a synthetic compound with the molecular formula C14H12BrNO. It is a white to off-white crystalline powder that is commonly used in research and development as a building block in the synthesis of pharmaceuticals and organic compounds. The compound is known for its aromatic properties and is commonly used as a reagent in the preparation of biologically active molecules and pharmaceutical intermediates. It is important to handle this compound with care as it can be toxic if ingested or inhaled, and proper safety precautions should be followed when working with this chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 7007-15-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 7,0,0 and 7 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 7007-15:
(6*7)+(5*0)+(4*0)+(3*7)+(2*1)+(1*5)=70
70 % 10 = 0
So 7007-15-0 is a valid CAS Registry Number.

7007-15-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name (2-amino-5-methylphenyl)-(2-bromophenyl)methanone

1.2 Other means of identification

Product number -
Other names 2-amino-5-methylphenyl 2-bromophenyl ketone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:7007-15-0 SDS

7007-15-0Relevant articles and documents

Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions

Bisz, Elwira,Chen, Hao,Dziuk, B?a?ej,Ejsmont, Krzysztof,Lalancette, Roger,Pyle, Daniel J.,Rahman, Md. Mahbubur,Szostak, Michal,Szostak, Roman,Wang, Qi

, p. 10455 - 10466 (2021/07/31)

The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter ?(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.

Chemoselective Synthesis of Aryl Ketones from Amides and Grignard Reagents via C(O)-N Bond Cleavage under Catalyst-Free Conditions

Sureshbabu, Popuri,Azeez, Sadaf,Muniyappan, Nalluchamy,Sabiah, Shahulhameed,Kandasamy, Jeyakumar

, p. 11823 - 11838 (2019/10/02)

Conversion of a wide range of N-Boc amides to aryl ketones was achieved with Grignard reagents via chemoselective C(O)-N bond cleavage. The reactions proceeded under catalyst-free conditions with different aryl, alkyl, and alkynyl Grignard reagents. α-Ketoamide was successfully converted to aryl diketones, while α,β-unsaturated amide underwent 1,4-addition followed by C(O)-N bond cleavage to provide diaryl propiophenones. N-Boc amides displayed higher reactivity than Weinreb amides with Grignard reagents. A broad substrate scope, excellent yields, and quick conversion are important features of this methodology.

Design, synthesis, and biological evaluation of oxazolidone derivatives as highly potent N-acylethanolamine acid amidase (NAAA) inhibitors

Ren, Jie,Li, Yuhang,Ke, Hongwei,Li, Yanting,Yang, Longhe,Yu, Helin,Huang, Rui,Lu, Canzhong,Qiu, Yan

, p. 12455 - 12463 (2017/03/11)

N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that catalyzes the hydrolysis of endogenous fatty acid ethanolamides (FAEs), such as N-palmitoylethanolamide (PEA). PEA exhibits anti-inflammatory and analgesic activities by engaging peroxisome proliferator-activated receptor α (PPAR-α). Preventing PEA degradation by inhibition of NAAA has been proposed as a novel strategy for the treatment of inflammation and pain. In the present study, we reported the discovery of the oxazolidone derivative as a novel scaffold for NAAA inhibitors, and studied the structure-activity relationship (SAR) by modification of the side chain and terminal lipophilic substituents. The results showed that the link chain length of C5, straight and saturated linkages were the preferred shape patterns for NAAA inhibition. Several nanomolar NAAA inhibitors were described, including 2f, 3h, 3i and 3j with IC50 values of 270 nM, 150 nM, 100 nM and 190 nM, respectively. Enzymatic degradation studies suggested that 2f inhibited NAAA in a selective, noncompetitive and reversible pattern. Moreover, 2f showed high anti-inflammatory and analgesic activities after systemic and oral administration.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 7007-15-0