Welcome to LookChem.com Sign In|Join Free

CAS

  • or

96789-80-9

Post Buying Request

96789-80-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

96789-80-9 Usage

Uses

(S)-1-[3-(TRIFLUOROMETHYL)PHENYL]ETHANOL is a useful research chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 96789-80-9 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,6,7,8 and 9 respectively; the second part has 2 digits, 8 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 96789-80:
(7*9)+(6*6)+(5*7)+(4*8)+(3*9)+(2*8)+(1*0)=209
209 % 10 = 9
So 96789-80-9 is a valid CAS Registry Number.
InChI:InChI=1/C9H9F3O/c1-6(13)7-3-2-4-8(5-7)9(10,11)12/h2-6,13H,1H3/t6-/m0/s1

96789-80-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name (1S)-1-[3-(trifluoromethyl)phenyl]ethanol

1.2 Other means of identification

Product number -
Other names (S)-1-(3-(Trifluoromethyl)phenyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:96789-80-9 SDS

96789-80-9Relevant articles and documents

Nickel-Catalyzed Enantioselective Hydroboration of Vinylarenes

Tran, Hai N.,Stanley, Levi M.

supporting information, p. 395 - 399 (2021/12/27)

The enantioselective hydroboration of vinylarenes catalyzed by a chiral, nonracemic nickel catalyst is presented as a facile method for generating chiral benzylic boronate esters. Various vinylarenes react with bis(pinacolato)diboron (B2pin2) in the presence of MeOH as a hydride source to form chiral boronate esters in up to 92% yield with up to 94% ee. The use of anhydrous Me4NF to activate B2pin2 is crucial for ensuring fast transmetalation to achieve high enantioselectivities.

Chitosan as a chiral ligand and organocatalyst: Preparation conditions-property-catalytic performance relationships

Kolcsár, Vanessza Judit,Sz?ll?si, Gy?rgy

, p. 7652 - 7666 (2021/12/13)

Chitosan is an abundant and renewable chirality source of natural origin. The effect of the preparation conditions by alkaline hydrolysis of chitin on the properties of chitosan was studied. The materials obtained were used as ligands in the ruthenium-catalysed asymmetric transfer hydrogenation of aromatic prochiral ketones and oxidative kinetic resolution of benzylic alcohols as well as organocatalysts in the Michael addition of isobutyraldehyde to N-substituted maleimides. The degrees of deacetylation of the prepared materials were determined by 1H NMR, FT-IR and UV-vis spectroscopy, the molecular weights by viscosity measurements, their crystallinity by WAXRD, and their morphology by SEM and TEM investigations. The materials were also characterized by Raman spectroscopy. The biopolymers which have molecular weights in a narrow (200-230 kDa) range and appropriate (80-95%) degrees of deacetylation were the most efficient ligands in the enantioselective transfer hydrogenation, whereas in the oxidative kinetic resolution the activity of the complexes and the stereoselectivity increased with the degree of deacetylation. The chirality of the chitosan was sufficient to obtain enantioselection in the Michael addition of isobutyraldehyde to maleimides in the aqueous phase. Interestingly, the biopolymer afforded the opposite enantiomer in excess compared to the monomer, d-glucosamine. In this reaction, good correlation between the degree of deacetylation and the catalytic activity was found. These results are novel steps in the application of this natural, biocompatible and biodegradable polymer in developing environmentally benign methods for the production of optically pure fine chemicals.

A Cobalt(II) Complex Bearing the Amine(imine)diphosphine PN(H)NP Ligand for Asymmetric Transfer Hydrogenation of Ketones

Huo, Shangfei,Chen, Hong,Zuo, Weiwei

supporting information, p. 37 - 42 (2020/10/21)

Novel chiral cobalt complex a containing amine(imine)diphosphine PN(H)NP ligand and complex b containing bis(amine)diphosphine PN(H)N(H)P ligand were synthesized. The structures of two complexes were characterized by X-ray crystallography and high resolution mass spectrometry. The catalytic performances of cobalt complexes a and b for asymmetric transfer hydrogenation (ATH) of ketones under mild conditions were evaluated using 2-propanolisopropanol as solvent and hydrogen source after being activated by 8 equivalents of base. Complex a showed a good reactivity for reduction of ketones, with a turnover number (TON) of up to 555, and a maximum enantiomeric excess (ee) value of up to 91 %. Complex b exhibited inertness for hydrogenation of ketones. Electronic structure studies on a and b were conducted to account for the function of ligands on the catalytic performances.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 96789-80-9