109463-48-1Relevant articles and documents
Potassium vinyltrifluoroborate: A stable and efficient vinylating agent of arenediazonium salts using palladium catalysts
Darses, Sylvain,Michaud, Guillaume,Genet, Jean-Pierre
, p. 5045 - 5048 (1998)
The air stable potassium vinyltrifluoroborate I was efficiently prepared in one step from vinylmagnesium chloride and used in palladium cross-coupling reactions with arenediazonium salts affording functionalized styrenes.
Electrochemically assisted heck reactions
Tian, Jun,Moeller, Kevin D.
, p. 5381 - 5383 (2005)
(Chemical Equation Presented) During efforts to develop chip-based Heck reaction chemistry, it was discovered that normal solution-phase Heck reactions can be dramatically accelerated using electrochemistry. The acceleration makes room temperature Heck reactions proceed at synthetically useful rates in the absence of added ligand. Presumably, the current passed through the reaction maintains a high level of active catalyst.
Triethanolamine as an efficient and reusable base, ligand and reaction medium for phosphane-free palladium-catalyzed heck reactions
Hong, Ji Li,Wang, Lei
, p. 5099 - 5102 (2006)
Triethanolamine was found to be an efficient and reusable base, ligand and reaction medium for phosphane-free palladium-catalyzed Heck reactions. The olefination of iodo- and bromoarenes generated the corresponding products in good to excellent yields in the presence of catalytic amounts of palladium acetate in triethanolamine without any additive. Moderate yields of the desired products were obtained with activated chloroarenes. In addition, triethanolamine could be recovered and recycled for five consecutive trials without significant loss of its reactivity. Wiley-VCH Verlag GmbH & Co. KGaA, 2006.
Palladium(II)/Cationic 2,2'-Bipyridyl system as a highly efficient and reusable catalyst for the Mizoroki-Heck reaction in water
Huang, Shao-Hsien,Chen, Jun-Rong,Tsai, Fu-Yu
, p. 315 - 330 (2010)
A water-soluble and air-stable Pd(NH3)2Cl 2/cationic 2,2'-bipyridyl system was found to be a highly-efficient and reusable catalyst for the coupling of aryl iodides and alkenes in neat water using Bu3N as a base. The reaction was conducted at 140 °C in a sealed tube in air with a catalyst loading as low as 0.0001 mol % for the coupling of activated aryl iodides with butyl and ethyl acrylates, providing the corresponding products in good to excellent yields with very high turnover numbers. In the case of styrene, Mizoroki-Heck coupling products were obtained in good to high yields by using a greater catalyst loading (1 mol %) and TBAB as a phase-transfer agent. After extraction, the residual aqueous solution could be reused several times with only a slight decrease in its activity, making the Mizoroki-Heck reaction "greener".
Heterobimetallic Pd/Mn and Pd/Co complexes as efficient and stereoselective catalysts for sequential Cu-free Sonogashira coupling–alkyne semi-hydrogenation reactions
Baweja, Saral,Clauss, Reike,Gelman, Dmitri,Hey-Hawkins, Evamarie
, p. 1344 - 1356 (2022/02/03)
A series of heterobimetallic PdII/MII complexes (MII = Mn, Co) were synthesised and tested as precatalysts for sequential Sonogashira coupling–alkyne semi-hydrogenation reactions to form Z-aryl alkenes. The carbometalated heterobimetallic PdII/CoII complex CoPdL3′ demonstrated an apparent cooperative effect compared to the corresponding monometallic counterparts. This compound was identified as a potent single-molecule catalyst for the one-pot Cu-free Sonogashira coupling of aryl bromides with terminal alkynes followed by chemo- and stereoselective semi-hydrogenation of the alkyne intermediate using NH3·BH3 as a hydrogen source. Furthermore, different aromatic substrates have been tested to show the generality of the reaction for the synthesis of Z-alkenes, including biologically active combretastatin A-4. In addition, the homogeneous nature of the catalytically active species was demonstrated.
Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone
Valentini, Federica,Ferlin, Francesco,Lilli, Simone,Marrocchi, Assunta,Ping, Liu,Gu, Yanlong,Vaccaro, Luigi
supporting information, p. 5887 - 5895 (2021/08/23)
Herein we report a simple protocol for the valorisation of a common urban biowaste. The lignocellulosic biomass obtained after the pre-treatment of pine needle urban waste is efficiently transformed into a low-cost support (PiNe) for the immobilization of Pd nanoparticles. The final Pd/PiNe heterogeneous catalyst features a small particle size (4.5 nm) and a metal loading (9.9 wt%) comparable with most commercially available and generally used counterparts. In this contribution, we tested the catalytic efficiency of the Pd/PiNe system in two representative cross-couplings, Heck and Hiyama reactions, and compared the results obtained with commercial Pd/C catalyst. The good reactivity in the biomass-derived solvent (GVL) confirms that the Pd/PiNe heterogeneous catalyst is a valid system that can be integrated into a waste valorization chain within a circular economy approach. In addition, the efficiency of the catalyst has also been extended to perform the challenging consecutive Hiyama-Heck reaction to afford differently substituted (E)-1,2-diarylethenes.
An Amine-Assisted Ionic Monohydride Mechanism Enables Selective Alkyne cis-Semihydrogenation with Ethanol: From Elementary Steps to Catalysis
Huang, Zhidao,Wang, Yulei,Leng, Xuebing,Huang, Zheng
supporting information, p. 4824 - 4836 (2021/04/07)
The selective synthesis of Z-alkenes in alkyne semihydrogenation relies on the reactivity difference of the catalysts toward the starting materials and the products. Here we report Z-selective semihydrogenation of alkynes with ethanol via a coordination-induced ionic monohydride mechanism. The EtOH-coordination-driven Cl- dissociation in a pincer Ir(III) hydridochloride complex (NCP)IrHCl (1) forms a cationic monohydride, [(NCP)IrH(EtOH)]+Cl-, that reacts selectively with alkynes over the corresponding Z-alkenes, thereby overcoming competing thermodynamically dominant alkene Z-E isomerization and overreduction. The challenge for establishing a catalytic cycle, however, lies in the alcoholysis step; the reaction of the alkyne insertion product (NCP)IrCl(vinyl) with EtOH does occur, but very slowly. Surprisingly, the alcoholysis does not proceed via direct protonolysis of the Ir-C(vinyl) bond. Instead, mechanistic data are consistent with an anion-involved alcoholysis pathway involving ionization of (NCP)IrCl(vinyl) via EtOH-for-Cl substitution and reversible protonation of Cl- ion with an Ir(III)-bound EtOH, followed by β-H elimination of the ethoxy ligand and C(vinyl)-H reductive elimination. The use of an amine is key to the monohydride mechanism by promoting the alcoholysis. The 1-amine-EtOH catalytic system exhibits an unprecedented level of substrate scope, generality, and compatibility, as demonstrated by Z-selective reduction of all alkyne classes, including challenging enynes and complex polyfunctionalized molecules. Comparison with a cationic monohydride complex bearing a noncoordinating BArF- ion elucidates the beneficial role of the Cl- ion in controlling the stereoselectivity, and comparison between 1-amine-EtOH and 1-NaOtBu-EtOH underscores the fact that this base variable, albeit in catalytic amounts, leads to different mechanisms and consequently different stereoselectivity.
Biogenic synthesis of Pd-nanoparticles using Areca Nut Husk Extract: a greener approach to access α-keto imides and stilbenes
Dateer, Ramesh B.,Ghosh, Arnab,Hegde, Rajeev V.,Jadhav, Arvind H.,Nizam, Aatika,Patil, Siddappa A.,Peter, Febina
supporting information, p. 16213 - 16222 (2021/09/22)
An eco-friendly green method for a one-step synthesis of palladium nanoparticles and their synthetic utility are reported. Phytochemicals like amines, alcohols, and phenols present in the Areca Nut Husk extract facilitate the reduction of Pd(ii) to Pd(0). The phytochemicals serve as stabilising agents and ligands for palladium reduction and the need for an external ligand is avoided. The Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy of newly synthesized palladium nanoparticles revealed a spherical morphology. The catalytic activity of the nanoparticles was tested for 1,2-difunctionalization of ynamides, Heck coupling, denitrogenative coupling of phenylhydrazine and C-H arylation of indole. Moreover, catalyst recyclability, control experiments, mechanistic elucidation, and gram-scale synthesis are elaborated.
A Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Alkynes to (E)-Alkenes with Ethanol
Chen, Dafa,Gong, Dawei,Hu, Bowen,Kong, Degong,Xia, Haiping,Yang, Weiwei
, (2020/03/19)
Four Ru(II)-NC complexes were tested as catalysts for semihydrogenation of internal alkynes to (E)-alkenes with ethanol, and the complex {(C5H4N)(C6H4)}RuCl(CO)(PPh3)2 (1a) showed the highest activity. The reactions proceeded well with 1 mol % catalyst loading and 0.1 equiv of t-BuONa at 110 °C for 1 h, and 32 alkenes were synthesized with excellent E:Z selectivity. This is the first ruthenium-catalyzed semihydrogenation of internal alkynes to (E)-alkenes using ethanol as the hydrogen donor.
Water as a Hydrogenating Agent: Stereodivergent Pd-Catalyzed Semihydrogenation of Alkynes
Zhao, Chuan-Qi,Chen, Yue-Gang,Qiu, Hui,Wei, Lei,Fang, Ping,Mei, Tian-Sheng
supporting information, p. 1412 - 1416 (2019/03/07)
Palladium-catalyzed transfer semihydrogenation of alkynes using H2O as the hydrogen source and Mn as the reducing reagent is developed, affording cis- and trans-alkenes selectively under mild conditions. In addition, this method provides an efficient way to access various cis-1,2-dideuterioalkenes and trans-1,2-dideuterioalkenes by using D2O instead of H2O.