Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-O-TOLYL-PROPAN-1-OL is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

14902-36-4

Post Buying Request

14902-36-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14902-36-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 14902-36-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,9,0 and 2 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 14902-36:
(7*1)+(6*4)+(5*9)+(4*0)+(3*2)+(2*3)+(1*6)=94
94 % 10 = 4
So 14902-36-4 is a valid CAS Registry Number.
InChI:InChI=1/C10H14O/c1-9-5-2-3-6-10(9)7-4-8-11/h2-3,5-6,11H,4,7-8H2,1H3

14902-36-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(2-methylphenyl)propan-1-ol

1.2 Other means of identification

Product number -
Other names 3-hydroxy-1-o-tolyl-propane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:14902-36-4 SDS

14902-36-4Relevant articles and documents

Unusual demethylation of O,O′-dimethyl chlorothiophosphate with aryllithiums

Ribeiro, Nigel,Maeda, Jin,Ishida, Yasuhiro,Kobayashi, Yuka,Saigo, Kazuhiko

, p. 1412 - 1413 (2007)

The reaction of O,O′-dimethyl chlorothiophosphate with aryllithiums took place easily to afford the corresponding methylated aryl compounds in place of expected O,O′-dimethyl aryl(thiophosphonate)s. Copyright

Umpolung Strategy for Arene C?H Etherification Leading to Functionalized Chromanes Enabled by I(III) N-Ligated Hypervalent Iodine Reagents

Mikhael, Myriam,Guo, Wentao,Tantillo, Dean J.,Wengryniuk, Sarah E.

supporting information, p. 4867 - 4875 (2021/09/14)

The direct formation of aryl C?O bonds via the intramolecular dehydrogenative coupling of a C?H bond and a pendant alcohol represents a powerful synthetic transformation. Herein, we report a method for intramolecular arene C?H etherification via an umpoled alcohol cyclization mediated by an I(III) N-HVI reagent. This approach provides access to functionalized chromane scaffolds from primary, secondary and tertiary alcohols via a cascade cyclization-iodonium salt formation, the latter providing a versatile functional handle for downstream derivatization. Computational studies support initial formation of an umpoled O-intermediate via I(III) ligand exchange, followed by competitive direct and spirocyclization/1,2-shift pathways. (Figure presented.).

Access to Trisubstituted Fluoroalkenes by Ruthenium-Catalyzed Cross-Metathesis

Nouaille, Augustin,Pannecoucke, Xavier,Poisson, Thomas,Couve-Bonnaire, Samuel

supporting information, p. 2140 - 2147 (2021/03/06)

Although the olefin metathesis reaction is a well-known and powerful strategy to get alkenes, this reaction remained highly challenging with fluororalkenes, especially the Cross-Metathesis (CM) process. Our thought was to find an easy accessible, convenient, reactive and post-functionalizable source of fluoroalkene, that we found as the methyl 2-fluoroacrylate. We reported herein the efficient ruthenium-catalyzed CM reaction of various terminal and internal alkenes with methyl 2-fluoroacrylate giving access, for the first time, to trisubstituted fluoroalkenes stereoselectively. Unprecedent TON for CM involving fluoroalkene, up to 175, have been obtained and the reaction proved to be tolerant and effective with a large range of olefin partners giving fair to high yields in metathesis products. (Figure presented.).

Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction

Kobayashi, Masaki,Itoh, Satoshi,Yoshimura, Keisuke,Tsukamoto, Yuya,Obora, Yasushi

, p. 11952 - 11958 (2020/10/23)

The development of a C2-extension of primary alcohols with ethanol as the C2 source and catalysis by [Cp*IrCl2]2 (where Cp? = pentamethylcyclopentadiene) is described. This new extension system was used for a range of benzylic alcohol substrates and for aliphatic alcohols with ethanol as an alkyl reagent to generate the corresponding C2-extended linear alcohols. Mechanistic studies of the reaction by means of intermediates and deuterium labeling experiments suggest the reaction is based on hydrogen autotransfer.

Ir-catalyzed tandem hydroformylation-transfer hydrogenation of olefins with (trans-/cis-)formic acid as hydrogen source in presence of 1,10-phenanthroline

Chen, Xiao-Chao,Gao, Han,Liu, Lei,Liu, Ye,Lu, Yong,Xia, Fei,Yang, Shu-Qing

, p. 183 - 193 (2020/04/08)

The one-pot tandem hydroformylation-reduction to synthesize alcohols from olefins is in great demand but suffering from low yields, poor selectivity and harsh condition. Herein, 1,10-phenanthroline (L1) modified Ir-catalyst proved to exhibit multiple cata

Bridged bicyclic 2,3-dioxabicyclo[3.3.1]nonanes as antiplasmodial agents: Synthesis, structure-activity relationships and studies on their biomimetic reaction with Fe(II)

D'Alessandro, Sarah,Alfano, Gloria,Di Cerbo, Luisa,Brogi, Simone,Chemi, Giulia,Relitti, Nicola,Brindisi, Margherita,Lamponi, Stefania,Novellino, Ettore,Campiani, Giuseppe,Gemma, Sandra,Basilico, Nicoletta,Taramelli, Donatella,Baratto, Maria Camilla,Pogni, Rebecca,Butini, Stefania

supporting information, (2019/06/13)

Despite recent advancements in its control, malaria is still a deadly parasitic disease killing millions of people each year. Progresses in combating the infection have been made by using the so-called artemisinin combination therapies (ACTs). Natural and synthetic peroxides are an important class of antimalarials. Here we describe a new series of peroxides synthesized through a new elaboration of the scaffold of bicyclic-fused/bridged synthetic endoperoxides previously developed by us. These peroxides are produced by a straightforward synthetic protocol and are characterized by submicromolar potency when tested against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. To investigate their mode of action, the biomimetic reaction of the representative compound 6w with Fe(II) was studied by EPR and the reaction products were characterized by NMR. Rationalization of the observed structure-activity relationship studies was performed by molecular docking. Taken together, our data robustly support the hypothesized mode of activation of peroxides 6a-cc and led to the definition of the key structural requirements responsible for the antiplasmodial potency. These data will pave the way in future to the rational design of novel optimized antimalarials suitable for in vivo investigation.

Anodic benzylic C(sp3)-H amination: Unified access to pyrrolidines and piperidines

Herold, Sebastian,Bafaluy, Daniel,Mu?iz, Kilian

, p. 3191 - 3196 (2018/07/29)

An electrochemical aliphatic C-H amination strategy was developed to access the important heterocyclic motifs of pyrrolidines and piperidines within a uniform reaction protocol. The mechanism of this unprecedented C-H amination strategy involves anodic C-H activation to generate a benzylic cation, which is efficiently trapped by a nitrogen nucleophile. The applicability of the process is demonstrated for 40 examples comprising both 5- and 6-membered ring formations.

Practical Intermolecular Hydroarylation of Diverse Alkenes via Reductive Heck Coupling

Gurak, John A.,Engle, Keary M.

, p. 8987 - 8992 (2018/09/11)

The hydroarylation of alkenes is an attractive approach to construct carbon-carbon (C-C) bonds from abundant and structurally diverse starting materials. Herein we report a palladium-catalyzed reductive Heck hydroarylation of aliphatic and heteroatom-substituted terminal alkenes and select internal alkenes with an array of (hetero)aryl iodides. The reaction is anti-Markovnikov selective with terminal alkenes and tolerates a wide variety of functional groups on both the alkene and (hetero)aryl coupling partners. Additionally, applications of this method to complex molecule diversifications are demonstrated. Mechanistic experiments are consistent with a mechanism in which the key alkylpalladium(II) intermediate is intercepted with formate and undergoes a decarboxylation/C-H reductive elimination cascade to afford the saturated product and turn over the cycle.

Salt-Free Strategy for the Insertion of CO2 into C?H Bonds: Catalytic Hydroxymethylation of Alkynes

Wendling, Timo,Risto, Eugen,Krause, Thilo,Goo?en, Lukas J.

supporting information, p. 6019 - 6024 (2018/03/27)

A copper(I) catalyst enables the insertion of carbon dioxide into alkyne C?H bonds by using a suitable organic base with which hydrogenation of the resulting carboxylate salt with regeneration of the base becomes thermodynamically feasible. In the presence of catalytic copper(I) chloride/4,7-diphenyl-1,10-phenanthroline, polymer-bound triphenylphosphine, and 2,2,6,6-tetramethylpiperidine as the base, terminal alkynes undergo carboxylation at 15 bar CO2 and room temperature. After filtration, the ammonium alkynecarboxylate can be hydrogenated to the primary alcohol and water at a rhodium/molybdenum catalyst, regenerating the amine base. This demonstrates the feasibility of a salt-free overall process, in which carbon dioxide serves as a C1 building block in a C?H functionalization.

Synthesis of 2-tetralone derivatives by Bi(OTf)3-catalyzed intramolecular hydroarylation/isomerization of propargyl alcohols

Yun, Jihee,Park, Jungmin,Kim, Jaehyun,Lee, Kooyeon

, p. 1045 - 1048 (2015/02/19)

Compared to 1-tetralones, 2-tetralones are expensive, less stable, and difficult to synthesize. A concise Bi-catalyzed method was developed for the synthesis of 2-tetralones from 5-phenylpent-1-yn-3-ol derivatives. Diverse 2-tetralones were obtained in moderate to good yields under mild conditions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14902-36-4