14902-36-4Relevant articles and documents
Unusual demethylation of O,O′-dimethyl chlorothiophosphate with aryllithiums
Ribeiro, Nigel,Maeda, Jin,Ishida, Yasuhiro,Kobayashi, Yuka,Saigo, Kazuhiko
, p. 1412 - 1413 (2007)
The reaction of O,O′-dimethyl chlorothiophosphate with aryllithiums took place easily to afford the corresponding methylated aryl compounds in place of expected O,O′-dimethyl aryl(thiophosphonate)s. Copyright
Umpolung Strategy for Arene C?H Etherification Leading to Functionalized Chromanes Enabled by I(III) N-Ligated Hypervalent Iodine Reagents
Mikhael, Myriam,Guo, Wentao,Tantillo, Dean J.,Wengryniuk, Sarah E.
supporting information, p. 4867 - 4875 (2021/09/14)
The direct formation of aryl C?O bonds via the intramolecular dehydrogenative coupling of a C?H bond and a pendant alcohol represents a powerful synthetic transformation. Herein, we report a method for intramolecular arene C?H etherification via an umpoled alcohol cyclization mediated by an I(III) N-HVI reagent. This approach provides access to functionalized chromane scaffolds from primary, secondary and tertiary alcohols via a cascade cyclization-iodonium salt formation, the latter providing a versatile functional handle for downstream derivatization. Computational studies support initial formation of an umpoled O-intermediate via I(III) ligand exchange, followed by competitive direct and spirocyclization/1,2-shift pathways. (Figure presented.).
Access to Trisubstituted Fluoroalkenes by Ruthenium-Catalyzed Cross-Metathesis
Nouaille, Augustin,Pannecoucke, Xavier,Poisson, Thomas,Couve-Bonnaire, Samuel
supporting information, p. 2140 - 2147 (2021/03/06)
Although the olefin metathesis reaction is a well-known and powerful strategy to get alkenes, this reaction remained highly challenging with fluororalkenes, especially the Cross-Metathesis (CM) process. Our thought was to find an easy accessible, convenient, reactive and post-functionalizable source of fluoroalkene, that we found as the methyl 2-fluoroacrylate. We reported herein the efficient ruthenium-catalyzed CM reaction of various terminal and internal alkenes with methyl 2-fluoroacrylate giving access, for the first time, to trisubstituted fluoroalkenes stereoselectively. Unprecedent TON for CM involving fluoroalkene, up to 175, have been obtained and the reaction proved to be tolerant and effective with a large range of olefin partners giving fair to high yields in metathesis products. (Figure presented.).
Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction
Kobayashi, Masaki,Itoh, Satoshi,Yoshimura, Keisuke,Tsukamoto, Yuya,Obora, Yasushi
, p. 11952 - 11958 (2020/10/23)
The development of a C2-extension of primary alcohols with ethanol as the C2 source and catalysis by [Cp*IrCl2]2 (where Cp? = pentamethylcyclopentadiene) is described. This new extension system was used for a range of benzylic alcohol substrates and for aliphatic alcohols with ethanol as an alkyl reagent to generate the corresponding C2-extended linear alcohols. Mechanistic studies of the reaction by means of intermediates and deuterium labeling experiments suggest the reaction is based on hydrogen autotransfer.
Ir-catalyzed tandem hydroformylation-transfer hydrogenation of olefins with (trans-/cis-)formic acid as hydrogen source in presence of 1,10-phenanthroline
Chen, Xiao-Chao,Gao, Han,Liu, Lei,Liu, Ye,Lu, Yong,Xia, Fei,Yang, Shu-Qing
, p. 183 - 193 (2020/04/08)
The one-pot tandem hydroformylation-reduction to synthesize alcohols from olefins is in great demand but suffering from low yields, poor selectivity and harsh condition. Herein, 1,10-phenanthroline (L1) modified Ir-catalyst proved to exhibit multiple cata
Bridged bicyclic 2,3-dioxabicyclo[3.3.1]nonanes as antiplasmodial agents: Synthesis, structure-activity relationships and studies on their biomimetic reaction with Fe(II)
D'Alessandro, Sarah,Alfano, Gloria,Di Cerbo, Luisa,Brogi, Simone,Chemi, Giulia,Relitti, Nicola,Brindisi, Margherita,Lamponi, Stefania,Novellino, Ettore,Campiani, Giuseppe,Gemma, Sandra,Basilico, Nicoletta,Taramelli, Donatella,Baratto, Maria Camilla,Pogni, Rebecca,Butini, Stefania
supporting information, (2019/06/13)
Despite recent advancements in its control, malaria is still a deadly parasitic disease killing millions of people each year. Progresses in combating the infection have been made by using the so-called artemisinin combination therapies (ACTs). Natural and synthetic peroxides are an important class of antimalarials. Here we describe a new series of peroxides synthesized through a new elaboration of the scaffold of bicyclic-fused/bridged synthetic endoperoxides previously developed by us. These peroxides are produced by a straightforward synthetic protocol and are characterized by submicromolar potency when tested against both chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains. To investigate their mode of action, the biomimetic reaction of the representative compound 6w with Fe(II) was studied by EPR and the reaction products were characterized by NMR. Rationalization of the observed structure-activity relationship studies was performed by molecular docking. Taken together, our data robustly support the hypothesized mode of activation of peroxides 6a-cc and led to the definition of the key structural requirements responsible for the antiplasmodial potency. These data will pave the way in future to the rational design of novel optimized antimalarials suitable for in vivo investigation.
Anodic benzylic C(sp3)-H amination: Unified access to pyrrolidines and piperidines
Herold, Sebastian,Bafaluy, Daniel,Mu?iz, Kilian
, p. 3191 - 3196 (2018/07/29)
An electrochemical aliphatic C-H amination strategy was developed to access the important heterocyclic motifs of pyrrolidines and piperidines within a uniform reaction protocol. The mechanism of this unprecedented C-H amination strategy involves anodic C-H activation to generate a benzylic cation, which is efficiently trapped by a nitrogen nucleophile. The applicability of the process is demonstrated for 40 examples comprising both 5- and 6-membered ring formations.
Practical Intermolecular Hydroarylation of Diverse Alkenes via Reductive Heck Coupling
Gurak, John A.,Engle, Keary M.
, p. 8987 - 8992 (2018/09/11)
The hydroarylation of alkenes is an attractive approach to construct carbon-carbon (C-C) bonds from abundant and structurally diverse starting materials. Herein we report a palladium-catalyzed reductive Heck hydroarylation of aliphatic and heteroatom-substituted terminal alkenes and select internal alkenes with an array of (hetero)aryl iodides. The reaction is anti-Markovnikov selective with terminal alkenes and tolerates a wide variety of functional groups on both the alkene and (hetero)aryl coupling partners. Additionally, applications of this method to complex molecule diversifications are demonstrated. Mechanistic experiments are consistent with a mechanism in which the key alkylpalladium(II) intermediate is intercepted with formate and undergoes a decarboxylation/C-H reductive elimination cascade to afford the saturated product and turn over the cycle.
Salt-Free Strategy for the Insertion of CO2 into C?H Bonds: Catalytic Hydroxymethylation of Alkynes
Wendling, Timo,Risto, Eugen,Krause, Thilo,Goo?en, Lukas J.
supporting information, p. 6019 - 6024 (2018/03/27)
A copper(I) catalyst enables the insertion of carbon dioxide into alkyne C?H bonds by using a suitable organic base with which hydrogenation of the resulting carboxylate salt with regeneration of the base becomes thermodynamically feasible. In the presence of catalytic copper(I) chloride/4,7-diphenyl-1,10-phenanthroline, polymer-bound triphenylphosphine, and 2,2,6,6-tetramethylpiperidine as the base, terminal alkynes undergo carboxylation at 15 bar CO2 and room temperature. After filtration, the ammonium alkynecarboxylate can be hydrogenated to the primary alcohol and water at a rhodium/molybdenum catalyst, regenerating the amine base. This demonstrates the feasibility of a salt-free overall process, in which carbon dioxide serves as a C1 building block in a C?H functionalization.
Synthesis of 2-tetralone derivatives by Bi(OTf)3-catalyzed intramolecular hydroarylation/isomerization of propargyl alcohols
Yun, Jihee,Park, Jungmin,Kim, Jaehyun,Lee, Kooyeon
, p. 1045 - 1048 (2015/02/19)
Compared to 1-tetralones, 2-tetralones are expensive, less stable, and difficult to synthesize. A concise Bi-catalyzed method was developed for the synthesis of 2-tetralones from 5-phenylpent-1-yn-3-ol derivatives. Diverse 2-tetralones were obtained in moderate to good yields under mild conditions.