188622-27-7Relevant articles and documents
Sustainable Route Toward N-Boc Amines: AuCl3/CuI-Catalyzed N-tert-butyloxycarbonylation of Amines at Room Temperature
Cao, Yanwei,Huang, Yang,He, Lin
, (2021/12/22)
N-tert-butoxycarbonyl (N-Boc) amines are useful intermediates in synthetic/medicinal chemistry. Traditionally, they are prepared via an indirect phosgene route with poor atom economy. Herein, a step- and atom-economic synthesis of N-Boc amines from amines, t-butanol, and CO was reported at room temperature. Notably, this N-tert-butyloxycarbonylation procedure utilized ready-made substrates, commercially available AuCl3/CuI as catalysts, and O2 from air as the sole oxidant. This catalytic system provided unique selectivity for N-Boc amines in good yields. More significantly, gram-scale preparation of medicinally important N-Boc amine intermediates was successfully implement, which demonstrated a potential application prospect in industrial syntheses. Furthermore, this approach also showed good compatibility with tertiary and other useful alcohols. Investigations of the mechanisms revealed that gold catalyzed the reaction and copper acted as electron transfer mediator in the catalytic cycle.
Amine-Responsive Disassembly of AuI–CuI Double Salts for Oxidative Carbonylation
Cao, Yanwei,Yang, Jian-Gong,Deng, Yi,Wang, Shengchun,Liu, Qi,Shen, Chaoren,Lu, Wei,Che, Chi-Ming,Chen, Yong,He, Lin
supporting information, p. 2080 - 2084 (2019/12/24)
A sensitive amine-responsive disassembly of self-assembled AuI-CuI double salts was observed and its utilization for the synergistic catalysis was enlightened. Investigation of the disassembly of [Au(NHC)2][CuI2] revealed the contribution of Cu-assisted ligand exchange of N-heterocyclic carbene (NHC) by amine in [Au(NHC)2]+ and the capacity of [CuI2]? on the oxidative step. By integrating the implicative information coded in the responsive behavior and inherent catalytic functions of d10 metal complexes, a catalyst for the oxidative carbonylation of amines was developed. The advantages of this method were clearly reflected on mild reaction conditions and the significantly expanded scope (51 examples); both primary and steric secondary amines can be employed as substrates. The cooperative reactivity from Au and Cu centers, as an indispensable prerequisite for the excellent catalytic performance, was validated in the synthesis of (un)symmetric ureas and carbamates.
FUSED HETEROCYCLIC DERIVATIVES, THEIR PREPARATION METHODS THEREOF AND MEDICAL USES THEREOF
-
Paragraph 0246; 0252; 0746-0749, (2019/07/03)
The present invention relates to fused heterocyclic derivatives, processes for their preparation and their use in medicine. Specifically, the present invention relates to a novel derivative represented by the formula (I′), or its pharmaceutically acceptable salt thereof, a pharmaceutical composition containing the derivative or its pharmaceutically acceptable salt thereof, and the method for preparing the derivative and its pharmaceutically acceptable salt thereof. The present invention also relates to the use of the derivative and its pharmaceutically acceptable salt thereof, or a pharmaceutical composition containing the derivative and its pharmaceutically acceptable salt thereof in the preparation of medicines, in particularly as IDO inhibitor medicines, for treating and/or preventing cancers. Wherein each substituent of the formula (I′) is the same as defined in the specification.
AMINO PYRIMIDINE COMPOUND FOR INHIBITING PROTEIN TYROSINE KINASE ACTIVITY
-
Paragraph 0511; 0512, (2019/06/07)
An amino pyrimidine compound for inhibiting protein tyrosine kinase activity, a pharmaceutical composition thereof, preparation therefor, and an application thereof. Specifically, an amino pyrimidine compound represented by formula (I), R1, R2, L, Y, R6, W, A, m, and n being defined in the specification, and a pharmaceutically acceptable salt, a stereoisomer, a solvent compound, a hydrate, a polymorphism, a prodrug, or an isotope variant thereof. The compound can be used for treating and/or preventing protein tyrosine kinase-related diseases such as cell proliferative diseases, cancers, and immune diseases.
Oxidation of Secondary Methyl Ethers to Ketones
Gilissen, Pieter J.,Blanco-Ania, Daniel,Rutjes, Floris P. J. T.
, p. 6671 - 6679 (2017/07/15)
We present a mild way of converting secondary methyl ethers into ketones using calcium hypochlorite in aqueous acetonitrile with acetic acid as activator. The reaction is compatible with various oxygen- and nitrogen-containing functional groups and afforded the corresponding ketones in up to 98% yield. The use of this methodology could expand the application of the methyl group as a useful protecting group.
NOVEL BETULINIC ACID DERIVATIVES AS HIV INHIBITORS
-
, (2013/11/18)
(I)The invention relates to novel novel betulinic acid derivatives and related compounds, and pharmaceutical compositions useful for therapeutic treatment of viral diseases and particularly HIV mediated diseases.
1-(DIHYDRONAPHTHALENYL)PYRIDONES AS MELANIN-CONCENTRATING HORMONE RECEPTOR 1 ANTAGONISTS
-
Page/Page column 64-65, (2013/10/22)
Provided are 1-(dihydronaphthalenyl)pyridones which are antagonists at the melanin-concentrating hormone receptor 1 (MCHR1), pharmaceutical compositions containing them, processes for their preparation, and their use in therapy for the treatment of obesity and diabetes.
2-SUBSTITUTED-ETHYNYLTHIAZOLE DERIVATIVES AND USES OF SAME
-
, (2011/05/03)
The present invention provides 2-substituted-ethynylthiazole derivatives of formula (I): wherein R1, R2 and X are as defined herein, or a pharmaceutically acceptable salt thereof; and pharmaceutical compositions and methods of using same.
NEW BRADYKININ B1 ANTAGONISTS
-
Page/Page column 201-202, (2010/04/03)
The invention relates to compounds of formula (I) where in R1, R1a, R1b, R2, R3 and X, X1, X2, X3 have the meaning as cited in the description and the claims. Said compounds are useful as Bradykinin B1 antagonists. The invention also relates to pharmaceutical compositions, the preparation of such compounds as well as the production and use as medicament.
PYRAZOLE DERIVATIVES
-
Page/Page column 33, (2010/11/26)
A compound represented by formula (I): (wherein Ar1 represents a phenyl group which may have 1 to 3 substituents, or a non-substituted 5- or 6-membered aromatic heterocyclic group; Ar2 represents (i) a non-substituted phenyl group, (ii) a phenyl group which has been substituted by a lower alkyl group having 1 to 3 groups or atoms selected from among a carbamoyl group, an amino group, a hydroxyl group, a lower alkoxy group, and a halogen atom, or (iii) a 5- or 6-membered nitrogen-containing aromatic heterocyclic group which has been substituted by 1 to 3 groups or atoms selected from among a lower alkyl group, a lower alkynyl group, a lower alkanoyl group, a carbamoyl group, a cyano group, an amino group, a hydroxyl group, a lower alkoxy group, and a halogen atom; and X represents a group represented by formula (II): (wherein the ring structure represents a 4- to 7-membered heterocyclic group which may have, in addition to the nitrogen atom shown in formula (II), one heteroatom selected from among nitrogen, oxygen, and sulfur, and which may be substituted by 1 to 4 groups or atoms selected from among a lower alkyl group, a carbamoyl group, an amino group, a hydroxyl group, a lower alkoxy group, an oxo group, a lower alkanoyl group, a lower alkylsulfonyl group, and a halogen atom)), a salt thereof, a solvate of the compound or the salt, and a drug.