645-09-0Relevant articles and documents
Visible light-mediated synthesis of amides from carboxylic acids and amine-boranes
Chen, Xuenian,Kang, Jia-Xin,Ma, Yan-Na,Miao, Yu-Qi
supporting information, p. 3595 - 3599 (2021/06/06)
Here, a photocatalytic deoxygenative amidation protocol using readily available amine-boranes and carboxylic acids is described. This approach features mild conditions, moderate-to-good yields, easy scale-up, and up to 62 examples of functionalized amides with diverse substituents. The synthetic robustness of this method was also demonstrated by its application in the late-stage functionalization of several pharmaceutical molecules.
Manganese-Pincer-Catalyzed Nitrile Hydration, α-Deuteration, and α-Deuterated Amide Formation via Metal Ligand Cooperation
Ben-David, Yehoshoa,Diskin-Posner, Yael,Kar, Sayan,Milstein, David,Zhou, Quan-Quan,Zou, You-Quan
, p. 10239 - 10245 (2021/08/24)
A simple and efficient system for the hydration and α-deuteration of nitriles to form amides, α-deuterated nitriles, and α-deuterated amides catalyzed by a single pincer complex of the earth-abundant manganese capable of metal-ligand cooperation is reported. The reaction is selective and tolerates a wide range of functional groups, giving the corresponding amides in moderate to good yields. Changing the solvent from tert-butanol to toluene and using D2O results in formation of α-deuterated nitriles in high selectivity. Moreover, α-deuterated amides can be obtained in one step directly from nitriles and D2O in THF. Preliminary mechanistic studies suggest the transformations contributing toward activation of the nitriles via a metal-ligand cooperative pathway, generating the manganese ketimido and enamido pincer complexes as the key intermediates for further transformations.
Ru-based complexes as heterogeneous potential catalysts for the amidation of aldehydes and nitriles in neat water
Arafa, Wael Abdelgayed Ahmed
supporting information, p. 1056 - 1064 (2020/11/09)
Five novel heterogeneous mononuclear complex-anchored Ru(III) have been efficiently sono-synthesized and characterized by utilizing several analytical techniques. The assembled complexes could be utilized as effective, robust and recyclable (up to eight consecutive runs) catalysts for one-pot transformation of a vast array of nitriles and aldehydes to primary amides in H2O under aerobic conditions. Moreover, some unreported di- and tetra-amide derivatives were obtained also under the optimal conditions. The results of ICP/OES analysis demonstrated that there is no detected leaching of the recycled catalyst, which suggests the real heterogeneity of the present protocol. The present Ru-complexes exhibited superiority compared to other reported catalysts for amide preparation in terms of low catalyst load, short reaction time, low operating temperature, no hazardous additives required, and high values of TON (990) and TOF (1980 h11).
The development of a novel transforming growth factor-β (TGF-β) inhibitor that disrupts ligand-receptor interactions
Wu, Han,Sun, Yu,Wong, Wee Lin,Cui, Jiajia,Li, Jingyang,You, Xuefu,Yap, Lee Fah,Huang, Yu,Hong, Wei,Yang, Xinyi,Paterson, Ian C.,Wang, Hao
, (2020/01/21)
Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
Fe3O4@GlcA@Cu-MOF: A Magnetic Metal-Organic Framework as a Recoverable Catalyst for the Hydration of Nitriles and Reduction of Isothiocyanates, Isocyanates, and Isocyanides
Ghorbani-Choghamarani, Arash,Taherinia, Zahra
supporting information, p. 902 - 909 (2020/11/30)
A novel magnetic metal-organic framework (Fe3O4@GlcA@Cu-MOF) has been prepared and characterized by spectroscopic, microscopic, and magnetic techniques. This magnetically separable catalyst exhibited high catalytic activity for nitrile hydration and the ability to reduce isothiocyanates, isocyanates, and isocyanides with excellent activity and selectivity without any additional reducing agent.
Method for preparing derivatives of benzamide under microwave condition in aqueous phase
-
Paragraph 0018; 0100, (2019/03/28)
The invention discloses a method for preparing derivatives of benzamide under a microwave condition in an aqueous phase. A coupling reaction is carried out between substituted benzoic acid and amine under the microwave condition in the aqueous phase. The method for preparing the derivatives of benzamide is environmentally friendly, easy and convenient to operate, safe, low in cost and efficient. Compared with the prior art, the method can be applicable to a large number of functional groups, is high in yield, produces fewer by-products, and further is easy to operate, safe, low in cost and environmentally friendly. A formula is shown in the description.
Method for efficient solid-phase synthesis of amide derivative through carboxylic acid and urea
-
Paragraph 0022-0030, (2019/11/12)
The invention discloses a method for efficient solid-phase synthesis of an amide derivative through carboxylic acid and urea. The method comprises the steps that a carboxylic acid and urea mixture anda catalyst are mixed, a mixture is placed in a sealed pipe of a single-mode microwave device and heated, then through a monitoring reaction endpoint, namely the ratio, being 4:1, of cyclohexane to ethyl acetate in thin-layer chromatography (TLC), reactants are cooled to the room temperature, extraction is conducted through the ethyl acetate, then an extract is sequentially washed by hydrochloricacid, a sodium bicarbonate solution and water, an organic layer is dried by anhydrous magnesium sulfate, a solvent is subjected to decompressed distillation, and thus the amide derivative is obtained.Benzoic acid and the urea are mixed and heated for a long time at 220 DEG C, a chemical reaction can be completed only within 20-80 seconds by applying a microwave assistive technology, and the effect higher than the effect achieved by conventional heating is achieved. By applying a solvent-free solid phase method and utilizing an easy-to-obtain reagent, high-yield amide is prepared through a simple and effective method, and the solvent-free solid phase method has the advantages of high reaction speed, low catalyst cost and the like.
Ti-superoxide catalyzed oxidative amidation of aldehydes with saccharin as nitrogen source: Synthesis of primary amides
Kamble, Rohit B.,Mane, Kishor D.,Rupanawar, Bapurao D.,Korekar, Pranjal,Sudalai,Suryavanshi, Gurunath
, p. 724 - 728 (2020/01/23)
A new heterogeneous catalytic system (Ti-superoxide/saccharin/TBHP) has been developed that efficiently catalyzes oxidative amidation of aldehydes to produce various primary amides. The protocol employs saccharin as amine source and was found to tolerate a wide range of substrates with different functional groups. Moderate to excellent yields, catalyst reusability and operational simplicity are the main highlights. A possible mechanism and the role of the catalyst in oxidative amidation have also been discussed.
Chemoselective Synthesis of Aryl Ketones from Amides and Grignard Reagents via C(O)-N Bond Cleavage under Catalyst-Free Conditions
Sureshbabu, Popuri,Azeez, Sadaf,Muniyappan, Nalluchamy,Sabiah, Shahulhameed,Kandasamy, Jeyakumar
, p. 11823 - 11838 (2019/10/02)
Conversion of a wide range of N-Boc amides to aryl ketones was achieved with Grignard reagents via chemoselective C(O)-N bond cleavage. The reactions proceeded under catalyst-free conditions with different aryl, alkyl, and alkynyl Grignard reagents. α-Ketoamide was successfully converted to aryl diketones, while α,β-unsaturated amide underwent 1,4-addition followed by C(O)-N bond cleavage to provide diaryl propiophenones. N-Boc amides displayed higher reactivity than Weinreb amides with Grignard reagents. A broad substrate scope, excellent yields, and quick conversion are important features of this methodology.
Activation of nitriles by silver(I) N-heterocyclic carbenes: An efficient on-water synthesis of primary amides
Thirukovela, Narasimha Swamy,Balaboina, Ramesh,Kankala, Shravankumar,Vadde, Ravindhar,Vasam, Chandra Sekhar
supporting information, p. 2637 - 2641 (2019/03/21)
A first example of silver(I) N-heterocyclic carbene (Ag(I)-NHC) catalyzed on-water synthesis of primary amides by hydration of nitriles under mild reaction conditions is described. This organometallic catalytic system has excellent tolerance for various homo-aromatic, hetero-aromatic and aliphatic nitriles to afford primary amides in good yields in neat water.