7631-86-9Relevant articles and documents
Development of Highly Active Silica-Supported Nickel Phosphide Catalysts for Direct Dehydrogenative Conversion of Methane to Higher Hydrocarbons
Dipu, Arnoldus Lambertus,Nishikawa, Yuta,Inami, Yuta,Iguchi, Shoji,Yamanaka, Ichiro
, p. 199 - 212 (2021/04/19)
The direct dehydrogenative conversion of methane (DCM) to higher hydrocarbons was investigated over silica-supported nickel phosphide catalysts (NixPy/SiO2) over 1023?K. NixPy/SiO2 catalysts were prepared by precipitation method to promote formation of nickel phosphide (Ni2P) as an active phase for the DCM reaction. Characterization studies of the NixPy/SiO2 catalysts with different P/Ni molar ratios were conducted by a X-ray diffraction analysis, a H2-temperature-programmed reduction spectrum, a scanning electron microscopy image, a X-ray absorption spectroscopy and a N2-adsorption measurement. Catalytic activity tests for the DCM reaction were conducted using a conventional fixed-bed reactor. Products of C2H4 (ethylene), C2H6 (ethane), C2H2 (acetylene), C3H6 (propylene), C6H6 (benzene), C7H8 (toluene), C10H8 (naphthalene) and H2 were analyzed by GC-TCD and GC-FID instruments. Different degrees of the Ni2P phase and character were observed for the NixPy/SiO2 catalysts from characterization studies. Data from characterization studies indicated that smaller and dispersed Ni2P particles were obtained by precipitation method as compared to that of impregnation method. NixPy/SiO2 with a molar ratio of P/Ni = 3.0 showed optimum catalytic performance with 3.28% of methane conversion, 1.93% of total product yield, and 60% of selectivity to hydrocarbons. The experimental results of the effects of reaction temperatures on the product distributions and activation energies indicated that the Ni2P phase successfully activated the C–H bond of methane and selectively converted to ethane. Ethane thermally converted to other higher hydrocarbons in the gas phase without the participation of the catalyst. Graphic Abstract: [Figure not available: see fulltext.].
CYCLOBUTYL AMIDE MONOACYLGLYCEROL LIPASE MODULATORS
-
, (2022/03/31)
Compounds of Formula (I), and pharmaceutically acceptable salts, isotopes, N-oxides, solvates, and stereoisomers thereof, pharmaceutical compositions containing them, methods of making them, and methods of using them including methods for treating disease states, disorders, and conditions associated with MGL modulation, such as those associated with pain, psychiatric disorders, neurological disorders (including, but not limited to depression, major depressive disorder, treatment resistant depression, anxious depression, autism spectrum disorders, Asperger syndrome, and bipolar disorder), cancers and eye conditions: wherein R1, , R3, and L are as defined herein.
CROSSLINKED ARTIFICIAL NUCLEIC ACID ALNA
-
, (2022/01/12)
The present invention provides a novel bridged artificial nucleic acid and an oligomer containing the same as a monomer. The present invention provides specifically a compound represented by general formula (I) (wherein each symbol is the same as defined in the specification) or salts thereof; as well as an oligonucleotide compound represented by general formula (I′) (wherein each symbol is the same as defined in the specification) or salts thereof.
COMPOUND FOR INHIBITING PGE2/EP4 SIGNALING TRANSDUCTION INHIBITING, PREPARATION METHOD THEREFOR, AND MEDICAL USES THEREOF
-
, (2022/03/14)
A compound of formula (I), a preparation method therefor, a pharmaceutical composition containing a derivative thereof, and the therapeutic uses thereof, especially inhibiting PGE2/EP4 signalling transduction and the uses thereof for treating cancer, acute or chronic pain, migraine, osteoarthritis, rheumatoid arthritis, gout, bursitis, ankylosing spondylitis, primary dysmenorrhea, tumour or arteriosclerosis.
Non-Cryogenic, Ammonia-Free Reduction of Aryl Compounds
-
, (2022/03/31)
A method of reducing an aromatic ring or a cyclic, allylic ether in a compound includes preparing a reaction mixture including a compound including an aromatic moiety or a cyclic, allylic ether moiety, an alkali metal, and either ethylenediamine, diethylenetriamine, triethylenetetramine, or a combination thereof, in an ether solvent; and reacting the reaction mixture at from ?20° C. to 30° C. for a time sufficient to reduce a double bond in the aromatic moiety to a single bond or to reduce the cyclic, allylic ether moiety.
RhNPs supported onN-functionalized mesoporous silica: effect on catalyst stabilization and catalytic activity
Pulido-Díaz, Israel T.,Serrano-Maldonado, Alejandro,López-Suárez, Carlos César,Méndez-Ocampo, Pedro A.,Portales-Martínez, Benjamín,Gutiérrez-Alejandre, Aída,Salas-Martin, Karla P.,Guerrero-Ríos, Itzel
, p. 3289 - 3298 (2021/03/16)
Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).
Catalytic hydrogenation of CO2from airviaporous silica-supported Au nanoparticles in aqueous solution
Lennox, R. Bruce,Li, Chao-Jun,Ni, Siting,Roy, Ranjan,Zhu, Jun
, p. 3740 - 3749 (2021/06/06)
The conversion of the ubiquitous greenhouse gas CO2to valuable organic products is much sought after. Herein, the hydrogenation of CO2to C1 products with an 80% yield in water is reported using a novel catalyst, porous-silica-supported Au nanoparticles (Au/SiO2). In the presence of a Lewis acid, boric acid, the Au/SiO2catalyst enables an efficient conversion of amine-captured CO2to methanol, formate, and formamide. A mechanistic study involving isotopic labelling suggests that methanol production in the catalytic process arises from the direct hydrogenation of formate. Most importantly, this one-pot, two-step process is able to convert CO2in air at ambient pressures to C1 products in the absence of an organic solvent. Furthermore, the catalyst is readily recycled without further purification or reactivation and shows no significant decrease in catalytic activity after four reaction cycles in a reusability test.
Effects of temperature on the structure of mesoporous silica materials templated with cationic surfactants in a nonhydrothermal short-term synthesis route
Borówka, Anna,Skrzypiec, Krzysztof
, (2021/05/03)
This paper reports the influence of synthesis temperature on the structure of mesoporous silica materials templated with ionic surfactant. The results obtained allow for the prediction of optimal temperature value to be used in nonhydrothermal short-term synthesis. The model materials were mesoporous silicates of MCM-41 type. The samples were prepared under alkaline conditions using tetraethyl orthosilicate as a silica source and cetyltrimethylammonium bromide or octadecyltrimethylammonium bromide as templates. An increase in synthesis temperature led to a rougher surface and decrease in the long-range ordering of the materials obtained, while a slight temperature decrease produced additional porosity. The reasons for these structural disturbances were briefly explained. The best material structure was obtained by synthesis at a temperature slightly higher than the Krafft temperature of surfactant of the porosity template.
In situthermosensitive hybrid mesoporous silica: preparation and the catalytic activities for carbonyl compound reduction
Ha, Chang-Sik,Mohan, Anandhu,Nagappan, Saravanan,Parambadath, Surendran,Park, Sung Soo,Peter, Jerome,Rout, Lipeeka,Thomas, Anju Maria,Zhang, Wei-Jin
, p. 11730 - 11741 (2021/09/06)
In this study, free-radical polymerisation inside MCM-41 mesopores was examined to expose a construction route for a temperature-responsive switchable polymer-silica nanohybrid material with well-defined porosity. Herein, we introduced a vinyl monomer (N-isopropyl acrylamide), a cross-linker, and an AIBN initiator into the palladium nanoparticle incorporated MCM-41 pore channels using the wet-impregnation method followed byin situradical polymerisation. The structural properties of the synthesised PNIPAM-PdNP-MCM-41 catalyst were analysed by various sophisticated analytical techniques. The temperature switchable nanohybrid catalyst was used to reduce carbonyl compounds to their corresponding alcohols. The catalyst showed high catalytic efficiency and robustness in an aqueous medium at 25 °C. Moreover, the system's polymer layer remarkably boosted catalytic selectivity and activity for carbonyl compound reduction as compared to other controlled catalysts. The suggested switchable system can be employed as a temperature-controllable heterogeneous catalyst and highlights a substitute technique to counter the methodical insufficiency in switchable supported molecular catalytic system production.
Effect of Mie resonance on photocatalytic hydrogen evolution over dye-sensitized hollow C-TiO2 nanoshells under visible light irradiation
Yao, Xiaxi,Hu, Xiuli,Cui, Yingying,Huang, Jialei,Zhang, Wenjun,Wang, Xuhong,Wang, Dawei
supporting information, p. 750 - 754 (2020/06/24)
Light utilization is one of the key factors for the improvement of photocatalytic performance. Herein, we design C-TiO2 hollow nanoshells with strong Mie resonance for enhanced photocatalytic hydrogen evolution in a dye-sensitized system under visible light irradiation (λ ≥ 420 nm). By tuning the inner diameters of hollow nanoshells, the Mie resonance in hollow nanoshells is adjusted for better excitation of dye molecules, which thus greatly enhances the light utilization in visible light region. This work shows the potential of Mie resonance in nanoshells can be an alternative strategy to increase the light utilization for photocatalysis.