111-20-6Relevant articles and documents
Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage
Takeuchi, Michiki,Kishino, Shigenobu,Park, Si-Bum,Kitamura, Nahoko,Watanabe, Hiroko,Saika, Azusa,Hibi, Makoto,Yokozeki, Kenzo,Ogawa, Jun
, p. 2132 - 2137 (2016)
The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbonneutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.
A direct synthesis of carboxylic acidsviaplatinum-catalysed hydroxycarbonylation of olefins
Schneider, Carolin,Franke, Robert,Jackstell, Ralf,Beller, Matthias
, p. 2703 - 2707 (2021)
The platinum-catalysed hydroxycarbonylation of olefins is reported for the first time. Using a combination of PtCl2/2,2′-bis(tert-butyl(pyridin-2-yl)phosphanyl)-1,1′-binaphthalene (Neolephos) in the presence of sulfuric acid [0.6 M] in acetic acid selective carbonylation of terminal aliphatic olefins proceeds to good yields and selectivities to the corresponding carboxylic acids. Comparing the reactivity of different butenes (iso- andn-butenes), the terminal olefin can be selectively carbonylated.
Six New Polyacetylenic Alcohols from the Marine Sponges Petrosia sp. and Halichondria sp.
Gabriel, Adeyemi Francis,Li, Zhen,Kusuda, Ryouhei,Tanaka, Chiaki,Miyamoto, Tomofumi
, p. 469 - 475 (2015)
Six new polyacetylenic alcohols, termed strongylotriols A and B; pellynols J, K, and L; and isopellynol A, together with three known polyacetylenic alcohols, pellynols A, B, and C were isolated from the marine sponges Petrosia sp., and Halichondria sp. collected in Okinawa, Japan. Their planer structures were determined based on 2D-NMR and mass spectrometric analysis of the degraded products by RuCl3 oxidation. The absolute stereochemistry of isolates was examined by their Mosher's esters. The strongylotriols were found to be optically pure compounds, whereas the pellynols are diastereomeric mixtures at the C-6 position. Proliferation experiments using the HeLa and K562 cell lines suggested that the essential structural units for activity are the "hexa-2,4-diyn-1,6-diol" and "pent-1-en-4-yn-3-ol" on the termini.
Aerobic oxidation of cycloalkanes, alcohols and ethylbenzene catalyzed by the novel carbon radical chain promoter NHS (N-hydroxysaccharin)
Baucherel, Xavier,Gonsalvi, Luca,Arends, Isabel W. C. E.,Ellwood, Simon,Sheldon, Roger A.
, p. 286 - 296 (2004)
Replacement of Ishii's N-hydroxyphthalimide (NHPI) with the novel carbon radical chain promoter N-hydroxysaccharin (NHS) affords, in combination with metal salts, notably Co, or other additives, selective catalytic autoxidation of hydrocarbons, alcohols and alkylbenzenes under mild conditions (25-100°C, O2 1 atm). The effects of solvent, temperature and the nature of the additives were investigated to give an optimised oxidation protocol for the various systems. The NHS/Co combination was more reactive than NHPI/Co in the autoxidation of cycloalkanes. In contrast, the opposite order of reactivity was observed in the autoxidation of ethylbenzene and alcohols. It is suggested, on the basis of bond dissociation energy (BDE) considerations, that this is a result of a change in the rate-limiting step with the more reactive ethylbenzene and alcohol substrates. In the autoxidation of the model cycloalkane, cyclododecane, the best results (90% selectivity to a 4:1 mixture of alcohol and ketone at 24% conversion) were obtained with NHS/Co(acac)3 in PhCF3 at 80°C. Competition experiments revealed that, in contrast to what is commonly believed, formation of the dicarboxylic acid by ring opening is not a result of further oxidation of the ketone product. It is suggested that ring opened products are a result of β-scission of the cycloalkoxy radical formed via (metal-catalysed) decomposition of the hydroperoxide. This is suppressed in the presence of NHS (or NHPI) which efficiently scavenge the alkoxy radicals.
Molecularization of Bitter Off-Taste Compounds in Pea-Protein Isolates (Pisum sativum L.)
Gl?ser, Peter,Dawid, Corinna,Meister, Stefanie,Bader-Mittermaier, Stephanie,Schott, Michael,Eisner, Peter,Hofmann, Thomas
, p. 10374 - 10387 (2020)
Activity-guided fractionations, combined with taste dilution analyses (TDA), were performed to locate the key compounds contributing to the bitter off-taste of pea-protein isolates (Pisum sativum L.). Purification of the compounds perceived with the highe
A Very Useful and Mild Method for the Protection and Deprotection of Carboxylic Acids
Cossy, Janine,Albouy, Arnaud,Scheloske, Michael,Pardo, Domingo Gomez
, p. 1539 - 1540 (1994)
3-Methylbut-2-enoate carboxylic acid can be a good protecting group of carboxylic acids and can be removed easily by using iodine in cyclohexane at room temperature.Key words: Protection, deprotection, 3-methylbut-2-enoate carboxylic acid, iodine.
Synthesis of Dicarboxylic Acids from Aqueous Solutions of Diols with Hydrogen Evolution Catalyzed by an Iridium Complex
Fujita, Ken-ichi,Toyooka, Genki
, (2020/07/13)
A catalytic system for the synthesis of dicarboxylic acids from aqueous solutions of diols accompanied by the evolution of hydrogen was developed. An iridium complex bearing a functional bipyridonate ligand with N,N-dimethylamino substituents exhibited a high catalytic performance for this type of dehydrogenative reaction. For example, adipic acid was synthesized from an aqueous solution of 1,6-hexanediol in 97 % yield accompanied by the evolution of four equivalents of hydrogen by the present catalytic system. It should be noted that the simultaneous production of industrially important dicarboxylic acids and hydrogen, which is useful as an energy carrier, was achieved. In addition, the selective dehydrogenative oxidation of vicinal diols to give α-hydroxycarboxylic acids was also accomplished.
Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium-Catalyzed Carbonylation of Allylic Alcohols
Beller, Matthias,Ge, Yao,Huang, Weiheng,Jackstell, Ralf,Liu, Jiawang,Neumann, Helfried,Yang, Ji
supporting information, p. 20394 - 20398 (2020/09/21)
A general and direct synthesis of dicarboxylic acids including industrially important adipic acid by palladium-catalyzed dicarbonylation of allylic alcohol is reported. Specifically, the combination of PdCl2 and a bisphosphine ligand (HeMaRaphos) promotes two different carbonylation reactions with high activity and excellent selectivity.
PROCESS FOR THE CO-PRODUCTION OF LONG CHAIN AMINO ACIDS AND DIBASIC ACIDS
-
Paragraph 0063-0065, (2019/02/01)
There is disclosed a process for the co-production of long chain ω-amino acid and long chain dibasic acid, comprising: (1) reacting long chain ketoacid derivative with hydroxylamine or subjecting ketoacid derivative to an ammoximation to yield oxime derivative; (2) subjecting oxime derivative to Beckmann rearrangement to yield a mixture of mixed amide derivatives; (3) hydrolyzing the mixed amide derivatives to produce long chain ω-amino acid and long chain dibasic acid.
Microalgae lipids as a feedstock for the production of benzene
Pingen, Dennis,Zimmerer, Julia,Klinkenberg, Nele,Mecking, Stefan
, p. 1874 - 1878 (2018/04/30)
A two-step one-pot synthesis of benzene from the five-fold unsaturated fatty acid eicosapentaenoic acid (EPA), a component of microalgae oils, is presented. By a sequence of olefin metathesis and the catalytic dehydrogenation of the resulting 1,4-cyclohexadiene, two equivalents of benzene are effectively formed per EPA substrate molecule. As the only major by-products, 5-octenoic acid and 5-decenedioic acid are formed. Performing the dehydrogenation step under hydrogen pressure results in the formation of their saturated analogues, sebacic acid and octanoic acid, both desirable products, while the simultaneous dehydrogenation step to benzene is not hampered.