Welcome to LookChem.com Sign In|Join Free

CAS

  • or

122334-37-6

Post Buying Request

122334-37-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

122334-37-6 Usage

Uses

N-Methoxy-N-methyl-4-chlorobenzamide is a derivative of Ketamine (K165300), which is an anesthetic (intravenous).

Check Digit Verification of cas no

The CAS Registry Mumber 122334-37-6 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,2,2,3,3 and 4 respectively; the second part has 2 digits, 3 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 122334-37:
(8*1)+(7*2)+(6*2)+(5*3)+(4*3)+(3*4)+(2*3)+(1*7)=86
86 % 10 = 6
So 122334-37-6 is a valid CAS Registry Number.
InChI:InChI=1/C9H10ClNO2/c1-11(13-2)9(12)7-3-5-8(10)6-4-7/h3-6H,1-2H3

122334-37-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 4-chloro-N-methoxy-N-methylbenzamide

1.2 Other means of identification

Product number -
Other names 4-chloro-N-methoxy-N-methyl-benzamide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:122334-37-6 SDS

122334-37-6Relevant articles and documents

A CO2-Catalyzed Transamidation Reaction

Yang, Yang,Liu, Jian,Kamounah, Fadhil S.,Ciancaleoni, Gianluca,Lee, Ji-Woong

, p. 16867 - 16881 (2021/11/18)

Transamidation reactions are often mediated by reactive substrates in the presence of overstoichiometric activating reagents and/or transition metal catalysts. Here we report the use of CO2as a traceless catalyst: in the presence of catalytic amounts of CO2, transamidation reactions were accelerated with primary, secondary, and tertiary amide donors. Various amine nucleophiles including amino acid derivatives were tolerated, showcasing the utility of transamidation in peptide modification and polymer degradation (e.g., Nylon-6,6). In particular,N,O-dimethylhydroxyl amides (Weinreb amides) displayed a distinct reactivity in the CO2-catalyzed transamidation versus a N2atmosphere. Comparative Hammett studies and kinetic analysis were conducted to elucidate the catalytic activation mechanism of molecular CO2, which was supported by DFT calculations. We attributed the positive effect of CO2in the transamidation reaction to the stabilization of tetrahedral intermediates by covalent binding to the electrophilic CO2

Rhoda-Electrocatalyzed Bimetallic C?H Oxygenation by Weak O-Coordination

Tan, Xuefeng,Massignan, Leonardo,Hou, Xiaoyan,Frey, Johanna,Oliveira, Jo?o C. A.,Hussain, Masoom Nasiha,Ackermann, Lutz

supporting information, p. 13264 - 13270 (2021/05/06)

Rhodium-electrocatalyzed arene C?H oxygenation by weakly O-coordinating amides and ketones have been established by bimetallic electrocatalysis. Likewise, diverse dihydrooxazinones were selectively accessed by the judicious choice of current, enabling twofold C?H functionalization. Detailed mechanistic studies by experiment, mass spectroscopy and cyclovoltammetric analysis provided support for an unprecedented electrooxidation-induced C?H activation by a bimetallic rhodium catalysis manifold.

Iron-Catalyzed, Iminyl Radical-Triggered Cascade 1,5-Hydrogen Atom Transfer/(5+2) or (5+1) Annulation: Oxime as a Five-Atom Assembling Unit

Chen, Ying-Chun,Du, Fei,Jiang, Kun,Liang, Wu,Ouyang, Qin,Shuai, Li,Wei, Ye,Yang, Jie

supporting information, p. 19222 - 19228 (2020/08/25)

By integration of iminyl radical-triggered 1,5-hydrogen atom transfer and (5+2) or (5+1) annulation processes, a series of structurally novel and interesting azepine and spiro-tetrahydropyridine derivatives have been successfully prepared in moderate to good yields. This method utilizes FeCl2 as the catalyst and readily available oximes as five-atom units, while showcasing broad substrate scope and good functional group compatibility. The annulation products can be easily converted into many valuable compounds. Moreover, DFT calculation studies are performed to provide some insights into the possible reaction mechanisms for the (5+2) and (5+1) annulations.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 122334-37-6