14173-39-8Relevant articles and documents
A novel phenylalanine ammonia-lyase from Pseudozyma antarctica for stereoselective biotransformations of unnatural amino acids
Varga, Andrea,Csuka, Pál,Sonesouphap, Orlavanah,Bánóczi, Gergely,To?a, Monica Ioana,Katona, Gabriel,Molnár, Zsófia,Bencze, László Csaba,Poppe, László,Paizs, Csaba
, p. 185 - 194 (2020/04/28)
A novel phenylalanine ammonia-lyase of the psychrophilic yeast Pseudozyma antarctica (PzaPAL) was identified by screening microbial genomes against known PAL sequences. PzaPAL has a significantly different substrate binding pocket with an extended loop (26 aa long) connected to the aromatic ring binding region of the active site as compared to the known PALs from eukaryotes. The general properties of recombinant PzaPAL expressed in E. coli were characterized including kinetic features of this novel PAL with L-phenylalanine (S)-1a and further racemic substituted phenylalanines rac-1b-g,k. In most cases, PzaPAL revealed significantly higher turnover numbers than the PAL from Petroselinum crispum (PcPAL). Finally, the biocatalytic performance of PzaPAL and PcPAL was compared in the kinetic resolutions of racemic phenylalanine derivatives (rac-1a-s) by enzymatic ammonia elimination and also in the enantiotope selective ammonia addition reactions to cinnamic acid derivatives (2a-s). The enantiotope selectivity of PzaPAL with o-, m-, p-fluoro-, o-, p-chloro- and o-, m-bromo-substituted cinnamic acids proved to be higher than that of PcPAL.
Synthesis, in vitro biological activity, hydrolytic stability and docking of new analogs of BIM-23052 containing halogenated amino acids
Danalev, Dancho,Borisova, Desislava,Yaneva, Spaska,Georgieva, Maya,Balacheva, Anelia,Dzimbova, Tatyana,Iliev, Ivan,Pajpanova, Tamara,Zaharieva, Zdravka,Givechev, Ivan,Naydenova, Emilia
, p. 1581 - 1592 (2020/11/23)
One of the potent somatostatin analogs, BIM-23052 (DC-23-99) d-Phe-Phe-Phe-d-Trp-Lys-Thr-Phe-Thr-NH2, has established in vitro growth hormone inhibitory activity in nM concentrations. It is also characterized by high affinity to some somatostatin receptors which are largely distributed in the cell membranes of many tumor cells. Herein, we report the synthesis of a series of analogs of BIM-23052 containing halogenated Phe residues using standard solid-phase peptide method Fmoc/OtBu-strategy. The cytotoxic effects of the compounds were tested in vitro against two human tumor cell lines—breast cancer cell line and hepatocellular cancer cell line, as well as on human non-tumorigenic epithelial cell line. Analogs containing fluoro-phenylalanines are cytotoxic in μM range, as the analog containing Phe (2-F) showed better selectivity against human hepatocellular cancer cell line. The presented study also reveals that accumulation of halogenated Phe residues does not increase the cytotoxicity according to tested cell lines. The calculated selective index reveals different mechanisms of antitumor activity of the parent compound BIM-23052 and target halogenated analogs for examined breast tumor cell lines. All peptides tested have high antitumor activity against the HepG2 cell line (IC50 ≈ 100?μM and SI > 5) compared to breast cells. This is probably due to the high permeability of the cell membrane and the higher metabolic activity of hepatocytes. In silico docking studies confirmed that all obtained analogs bind well with the somatostatin receptors with preference to ssrt3 and ssrt5. All target compounds showed high hydrolytic stability at acid and neutral pH, which mimic physiological condition in stomach and human plasma.
Biocatalytic stereoinversion of d-: Para -bromophenylalanine in a one-pot three-enzyme reaction
Khorsand, Fahimeh,Murphy, Cormac D.,Whitehead, Andrew J.,Engel, Paul C.
, p. 503 - 510 (2017/08/14)
Halogenated derivatives of phenylalanine can be used as cross-coupling reagents for making drug-like molecules, and pure enantiomers of these precursors are therefore highly desirable. In our exploration of enzymatic routes to simplify the deracemisation process, the application of two enzymes, d-amino acid transaminase and phenylalanine dehydrogenase, both from Lysinibacillus sphaericus, has given promising results for the stereo-inversion of d-enantiomers of para-bromophenylalanine as the model substrate and also p-chloro/fluorophenylalanine and tyrosine. The addition of a coenzyme recycling system using ethanol and alcohol dehydrogenase reduced the amount of coenzyme needed for the reaction catalysed by phenylalanine dehydrogenase, reducing cost and permitting efficient and complete conversion of the racemic amino acids to the l-enantiomer. Relative proportions of the enzymes were optimized. The high purity of the l-enantiomer, with an ee over 99%, and the ease of the process make it an ideal alternative for deracemisation of the studied compounds.
Kinetic Resolution of Aromatic β-Amino Acids Using a Combination of Phenylalanine Ammonia Lyase and Aminomutase Biocatalysts
Weise, Nicholas J.,Ahmed, Syed T.,Parmeggiani, Fabio,Turner, Nicholas J.
supporting information, p. 1570 - 1576 (2017/05/05)
An enzymatic strategy for the preparation of (R)-β-arylalanines employing phenylalanine aminomutase and ammonia lyase (PAM and PAL) enzymes has been demonstrated. Candidate PAMs with the desired (S)-selectivity from Streptomyces maritimus (EncP) and Bacillus sp. (PabH) were identified via sequence analysis using a well-studied template sequence. The newly discovered PabH could be linked to the first ever proposed biosynthesis of pyloricidin-like secondary metabolites and was shown to display better β-lyase activity in many cases. In spite of this, a method combining the higher conversion of EncP with a strict α-lyase from Anabaena variabilis (AvPAL) was found to be more amenable, allowing kinetic resolution of five racemic substrates and a preparative-scale reaction with >98% (R) enantiomeric excess. This work represents an improved and enantiocomplementary method to existing biocatalytic strategies, allowing simple product separation and modular telescopic combination with a preceding chemical step using an achiral aldehyde as starting material. (Figure presented.).
Bio-inspired enantioselective full transamination using readily available cyclodextrin
Zhang, Shiqi,Li, Guangxun,Liu, Hongxin,Wang, Yingwei,Cao, Yuan,Zhao, Gang,Tang, Zhuo
, p. 4203 - 4208 (2017/02/05)
The mimics of vitamin B6-dependent enzymes that catalyzed an enantioselective full transamination in the pure aqueous phase have been realized for the first time through the establishment of a new “pyridoxal 5′-phosphate (PLP) catalyzed non-covalent cyclodextrin (CD)-keto acid inclusion complexes” system, and various optically active amino acids have been obtained.
Intensified biocatalytic production of enantiomerically pure halophenylalanines from acrylic acids using ammonium carbamate as the ammonia source
Weise, Nicholas J.,Ahmed, Syed T.,Parmeggiani, Fabio,Siirola, Elina,Pushpanath, Ahir,Schell, Ursula,Turner, Nicholas J.
, p. 4086 - 4089 (2016/07/06)
An intensified, industrially-relevant strategy for the production of enantiopure halophenylalanines has been developed using the novel combination of a cyanobacterial phenylalanine ammonia lyase (PAL) and ammonium carbamate reaction buffer. The process boasts STYs up to >200 g L-1 d-1, ees ≥ 98% and simplified catalyst/reaction buffer preparation and work up.
Telescopic one-pot condensation-hydroamination strategy for the synthesis of optically pure L-phenylalanines from benzaldehydes
Parmeggiani, Fabio,Ahmed, Syed T.,Weise, Nicholas J.,Turner, Nicholas J.
, p. 7256 - 7262 (2016/10/26)
A chemo-enzymatic telescopic approach was designed for the synthesis of L-arylalanines in high yield and optical purity, starting from commercially available and inexpensive substituted benzaldehydes. The method exploits a chemical Knoevenagel–Doebner condensation (optimised to give complete conversions in a short reaction time, employing microwave irradiation) and a biocatalytic phenylalanine ammonia lyase mediated hydroamination (for the stereoselective addition of ammonia). The two reactions can be run sequentially in one pot, bringing together the advantages of chemical and biological catalysis. The preparative applicability was demonstrated with the synthesis of five L-dihalophenylalanines (71–84% yield, 98–99% ee) of relevance as molecular probes, for medicinal chemistry and for the synthesis of pharmaceutical ingredients.
The bacterial ammonia lyase EncP: A tunable biocatalyst for the synthesis of unnatural amino acids
Weise, Nicholas J.,Parmeggiani, Fabio,Ahmed, Syed T.,Turner, Nicholas J.
supporting information, p. 12977 - 12983 (2015/10/28)
Enzymes of the class I lyase-like family catalyze the asymmetric addition of ammonia to arylacrylates, yielding high value amino acids as products. Recent examples include the use of phenylalanine ammonia lyases (PALs), either alone or as a gateway to deracemization cascades (giving (S)- or (R)-α-phenylalanine derivatives, respectively), and also eukaryotic phenylalanine aminomutases (PAMs) for the synthesis of the (R)-β-products. Herein, we present the investigation of another family member, EncP from Streptomyces maritimus, thereby expanding the biocatalytic toolbox and enabling the production of the missing (S)-β-isomer. EncP was found to convert a range of arylacrylates to a mixture of (S)-α- and (S)-β-arylalanines, with regioselectivity correlating to the strength of electron-withdrawing/-donating groups on the ring of each substrate. The low regioselectivity of the wild-type enzyme was addressed via structure-based rational design to generate three variants with altered preference for either α- or β-products. By examining various biocatalyst/substrate combinations, it was demonstrated that the amination pattern of the reaction could be tuned to achieve selectivities between 99:1 and 1:99 for β:α-product ratios as desired.
Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway
Lovelock, Sarah L.,Lloyd, Richard C.,Turner, Nicholas J.
supporting information, p. 4652 - 4656 (2014/05/20)
Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1cB elimination mechanism. All manner of things: A competing MIO-independent (MIO=4-methylideneimidazole-5-one) reaction pathway has been identified for phenylalanine ammonia lyases (PALs), which proceeds in a non-stereoselective manner, resulting in the generation of D-phenylalanine derivatives. The mechanism of D-amino acid formation is explored through isotopic-labeling studies and mutagenesis of key active-site residues.