41052-75-9Relevant articles and documents
Design, Synthesis, and Antifungal Activity of 2,6-Dimethyl-4-aminopyrimidine Hydrazones as PDHc-E1 Inhibitors with a Novel Binding Mode
Zhou, Yuan,Zhang, Shasha,Cai, Meng,Wang, Kaixing,Feng, Jiangtao,Xie, Dan,Feng, Lingling,Peng, Hao,He, Hongwu
, p. 5804 - 5817 (2021/06/25)
A series of novel 2,6-dimethyl-4-aminopyrimidine hydrazones 5 were rationally designed and synthesized as pyruvate dehydrogenase complex E1 (PDHc-E1) inhibitors. Compounds 5 strongly inhibited Escherichia coli (E. coli) PDHc-E1 (IC50 values 0.94-15.80 μM). As revealed by molecular docking, site-directed mutagenesis, enzymatic, and inhibition kinetic analyses, compounds 5 competitively inhibited PDHc-E1 and bound in a "straight"pattern at the E. coli PDHc-E1 active site, which is a new binding mode. In in vitro antifungal assays, most compounds 5 at 50 μg/mL showed more than 80% inhibition against the mycelial growth of six tested phytopathogenic fungi, including Botrytis cinerea, Monilia fructigena, Colletotrichum gloeosporioides, andBotryosphaeria dothidea. Notably, 5f and 5i were 1.8-380 fold more potent against M. fructigena than the commercial fungicides captan and chlorothalonil. In vivo, 5f and 5i controlled the growth of M. fructigena comparably to the commercial fungicide tebuconazole. Thus, 5f and 5i have potential commercial value for the control of peach brown rot caused by M. fructigena.
Substituted indole urea derivative, synthetic method and application thereof
-
Paragraph 0072; 0102-0104, (2021/08/14)
The invention discloses a substituted indole urea derivative, a synthesis method and application thereof. The structure is shown as a formula I. In the formula, the definition of each substituent group is described in the specification and claims. The compound disclosed by the invention can be used as a cGAS-STING pathway targeting inhibitor and is used for treating inflammatory diseases and autoimmune diseases.
Synthesis method of metolachlor intermediate
-
Paragraph 0078-0088; 0097-0107, (2021/09/21)
The synthesis method comprises the following steps: S1) nitration reaction of chlorobenzene in a nitration reagent to obtain a mixture of o-chloronitrobenzene and p-chloronitrobenzene without separation. S2) The mixture of o-chloronitrobenzene and p-chloronitrobenzene is subjected to catalytic hydrogenation reaction to obtain the mixture of o-chloroaniline and p-chloroaniline, and the product does not need to be separated. S3) The mixture of o-chloroaniline and chloroaniline is subjected to diazotization reaction to obtain the mixture of o-chlorophenylhydrazine and p-chlorophenylhydrazine, and the product does not need to be separated. S4) The mixture of o-chlorophenylhydrazine and p-chlorophenylhydrazine and aldehyde are subjected to a condensation reaction to obtain a triazole ring mixture of Formulae I through a and I through b. S5) The triazole ring mixture is subjected to chlorination reaction to obtain the metolachlor intermediate shown in the formula I. 2, 4 - Dichloroaniline is used as a raw material, the production cost of the metolachlor is reduced, and the supply limitation of the raw material is avoided.
Synthesis, in vitro Antimicrobial, and Cytotoxic Activities of New 1,3,4-Oxadiazin-5(6H)-one Derivatives from Dehydroabietic Acid
Jin, Xiao-Yan,Zhang, Kang-Ping,Chen, Hao,Miao, Ting-Ting,Wang, Shi-Fa,Gu, Wen
, p. 538 - 547 (2018/06/11)
A series of new 1,3,4-oxadiazin-5(6H)-one derivatives (6a–n) of dehydroabietic acid were designed and synthesized as potential antimicrobial and antitumor agents. Their structures were characterized by IR, 1H NMR, 13C NMR, MS, and elemental analyses. All the title compounds were evaluated for their antimicrobial activity against four bacterial and three fungal strains using the serial dilution method. Among them, compound 6e showed the highest antibacterial activity against Bacillus subtilis with a minimum inhibitory concentration (MIC) value of 1.9 μg/mL. In addition, the in vitro cytotoxic activities of the title compounds were also assayed against three human carcinoma cell lines (MCF-7, SMMC-7721, and HeLa) through the MTT colorimetric method. As a result, compounds 6b, 6g, 6k, and 6m exhibited significant inhibition against at least one cell line with IC50 values below 10 μM. Compound 6m was especially found to be the most potent derivative with IC50 values of 2.26 ± 0.23, 0.97 ± 0.11, and 1.89 ± 0.31 μM against MCF-7, SMMC-7721, and HeLa cells, respectively, comparable to positive control etoposide.
Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors
Zhai, Min'an,Wang, Long,Liu, Shiyuan,Wang, Lijing,Yan, Peng,Wang, Junfang,Zhang, Jingbo,Guo, Haifei,Guan, Qi,Bao, Kai,Wu, Yingliang,Zhang, Weige
, p. 137 - 147 (2018/07/13)
A series of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanones (8a-p, 9a-p) and ketoxime (10c) derivatives were designed and synthesized as antitubulin agents. All of the target compounds were evaluated for the in vitro anti-proliferative activities against three tumor cell lines (A549, HT-1080, SGC-7901). The most promising compounds in this class were (1-(p-tolyl)-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone (9c) and its ketoxime derivative (10c), which significantly inhibited tumor cells growth with IC50 value of 0.054–0.16 μM. Meanwhile, compound 9c exhibited effectively inhibitory activity of tubulin polymerization. Consistent with its antitubulin activity, compound 9c could destructively damage microtubule network and arrest SGC-7901 cell cycle at G2/M phase significantly. The structure-activity relationship (SAR) and conformational analysis indicate that methyl group at C4-position of C-ring is critical for the activities and the amino group at the C5-position of B-ring plays a negative role in maintaining bioactivity. Furthermore, a molecular docking study was performed to elucidate its binding mode at the colchicine site in the tubulin heterodimer.
Design, synthesis, crystal structures, and insecticidal activities of eight-membered azabridge neonicotinoid analogues
Xu, Renbo,Xia, Rui,Luo, Ming,Xu, Xiaoyong,Cheng, Jiagao,Shao, Xusheng,Li, Zhong
, p. 381 - 390 (2014/02/14)
Three series of novel azabridge neonicotinoid analogues were designed and synthesized, which were constructed by starting material A, glutaraldehyde, and primary amine hydrochlorides (aliphatic amines, phenylhydrazines, and anilines). Most of the eight-membered azabridge compounds presented higher insecticidal activities than oxabridged compound B against cowpea aphid (Aphis craccivora) and brown planthopper (Nilaparvata lugens). Compared with imidacloprid, some azabridged compounds exhibited excellent insecticidal activity against brown planthopper. The crystal structures and bioassay indicated that changing bridge atoms from O to N could lead to entirely different conformations, which might be the important influential factor of the bioactivities.
Synthesis and antimicrobial activities of novel 1H-dibenzo[a,c]carbazoles from dehydroabietic acid
Gu, Wen,Wang, Shifa
experimental part, p. 4692 - 4696 (2010/10/03)
A series of novel 1H-dibenzo[a,c]carbazole derivatives were synthesized in good yield through reaction of methyl 7-oxo-dehydroabietate with a variety of substituted phenylhydrazines. The structures of the newly synthesized compounds were confirmed by IR, 1H NMR, MS spectral studies and elemental analysis. All compounds were investigated for their activity against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas fluorescens) and three fungi (Trichophyton rubrum, Candida albicans and Aspergillus niger). Among the compound tested, 6d, 6e, 6f and 6m exhibited pronounced antibacterial activities and 6e and 6m also showed moderate antifungal activities. Particularly, 6d exhibited stronger antibacterial activity against B. subtilis comparable to positive control.
Synthesis, crystal structure and fungicidal activities of new type oxazolidinone-based strobilurin analogues
Li, Yuhao,Liu, Rui,Yan, Zhangwei,Zhang, Xiangning,Zhu, Hongjun
experimental part, p. 3341 - 3347 (2012/05/05)
A series of oxazolidinone-based strobilurin analogues were efficiently synthesized by the reaction of 3-(2-bromomethylphenyl) oxazolidin-2-one with 1-substituted phenyl-2H-pyrazolin-3-one. Their structures were confirmed and characterized by 1H-NMR, 13C-NMR, elemental analysis, and mass spectroscopy. In addition, the crystal structure of the target compound 3-(2-((1-phenyl-2H-pyrazol-3-yloxy)methyl)phenyl) oxazolidin-2-one was determined by single crystal X-ray diffraction. The bioassay results of these compounds indicated that some of the oxazolidin-2-one derivatives containing N-substituted phenyl 2H-pyrazol ring exhibited potential in vivo fungicidal activities against M. grisea at the dosage of 1 g L-1.
Preparation of sodium-hydrogen exchanger type-1 inhibitors
-
, (2008/06/13)
This invention relates to methods of preparing sodium-hydrogen exchanger type 1 (NHE-1) inhibitors of formula I′ 1intermediates of the NHE-1 inhibitors and a new almost colorless form of the NHE-1 inhibitor N-(5-cyclopropyl-1-quinolin-5-yl-1H-pyrazole-4-carbonyl)-guanidine.