488-81-3Relevant articles and documents
L-xylo-3-hexulose reductase is the missing link in the oxidoreductive pathway for D-galactose catabolism in filamentous fungi
Mojzita, Dominik,Herold, Silvia,Metz, Benjamin,Seiboth, Bernhard,Richard, Peter
, p. 26010 - 26018 (2012)
In addition to the well established Leloir pathway for the catabolism of D-galactose in fungi, the oxidoreductive pathway has been recently identified. In this oxidoreductive pathway, D-galactose is converted via a series of NADPH-dependent reductions and NAD+-dependent oxidations into D-fructose. The pathway intermediates include galactitol, L-xylo-3-hexulose, and D-sorbitol. This study identified the missing link in the pathway, the L-xylo-3-hexulose reductase that catalyzes the conversion of L-xylo-3-hexulose to D-sorbitol. In Trichoderma reesei (Hypocrea jecorina) and Aspergillus niger, we identified the genes lxr4 and xhrA, respectively, that encode the L-xylo-3-hexulose reductases. The deletion of these genes resulted in no growth on galactitol and in reduced growth on D-galactose. The LXR4 was heterologously expressed, and the purified protein showed high specificity for L-xylo-3-hexulose with a Km=2.0±0.5mM and a V max=5.5±1.0 units/mg. We also confirmed that the product of the LXR4 reaction is D-sorbitol.
Structure of a new ribitol teichoic acid-like O-polysaccharide of a serologically separate Proteus vulgaris strain, TG 276-1, classified into a new Proteus serogroup O53
Arbatsky, Nikolay P.,Kondakova, Anna N.,Senchenkova, Sof'ya N.,Siwinska, Malgorzata,Shashkov, Alexander S.,Zych, Krystyna,Knirel, Yuriy A.,Sidorczyk, Zygmunt
, p. 2061 - 2066 (2007)
An unusual ribitol teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide from a previously non-classified Proteus vulgaris strain TG 276-1. Structural studies using chemical analyses and 2D 1H and 13C NMR spectroscopy showed that the polysaccharide is a zwitterionic polymer with a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (d-FucNAc4N) and two d-ribitol phosphate (d-Rib-ol-5-P) residues and having the following structure:{A figure is presented}where the non-glycosylated ribitol residue is randomly mono-O-acetylated. Based on the unique O-polysaccharide structure and the finding that the strain studied is serologically separate among Proteus bacteria, we propose to classify P. vulgaris strain TG 276-1 into a new Proteus serogroup, O53.
Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts
Fongarland, Pascal,Freitas, Victoria D. S.,Paez, Ana,Philippe, Régis,Veyre, Laurent,Vilcocq, Léa
, p. 39387 - 39398 (2021/12/27)
Xylose is a major component of hemicelluloses. In this paper, its hydrogenation to xylitol in aqueous medium was investigated with two Ru/TiO2catalysts prepared with two commercial TiO2supports. A strong impact of the support on catalytic performance was evidenced. Ru/TiO2-R led to fast and selective conversion of xylose (100% conversion in 2 h at 120 °C with 99% selectivity) whereas Ru/TiO2-A gave a slower and much less selective transformation (58% conversion in 4 h at 120 °C with 17% selectivity) with the formation of several by-products. Detailed characterization of the catalysts with ICP, XRD, FTIR, TEM, H2chemisorption, N2porosimetry, TPR and acid-base titration was performed to elucidate the role of each support. TiO2-R has a small specific surface area with large ruthenium nanoparticles in weak interaction with the TiO2support and no acidity, whereas TiO2-A is a mesoporous material with a large specific surface area that is mildly acidic, and bears small ruthenium particles in strong interaction with the TiO2support. The former was very active and selective for xylose hydrogenation to xylitol whereas the latter was less active and poorly selective. Moreover, careful analysis of the reaction products also revealed that anatase TiO2can catalyze undesired side-reactions such as xylose isomerisation to various pentoses, and therefore the corresponding unexpected polyols (arabitol, ribitol) were produced during xylose conversion by hydrogenation. In a first kinetic approach, a simplified kinetic model was built to compare quantitatively intrinsic reaction rates of both catalysts. The kinetic constant for hydrogenation was 20 times higher for Ru/TiO2-R at 120 °C.
COMPOSITIONS AND METHODS OF MAKING RIBITOL
-
Page/Page column 17, (2020/12/11)
The present disclosure describes compositions comprising substantially pure ribitol, pharmaceutical compositions of ribitol, and methods of making ribitol. The methods may include combining a reducing agent (e.g., borohydride) and ribose (e.g. D-ribose), optionally with stirring, to form a first reaction mixture; and contacting the first reaction mixture and an acidic quenching agent, optionally with stirring, to form a second reaction mixture, thereby forming ribitol.
Effect of Cu addition to carbon-supported Ru catalysts on hydrogenation of alginic acid into sugar alcohols
Ban, Chunghyeon,Yang, Seungdo,Kim, Hyungjoo,Kim, Do Heui
, p. 98 - 104 (2019/04/17)
The objective of this study was to investigate the effect of Cu addition to carbon supported Ru catalysts on the hydrogenation of macroalgae-derived alginic acid into sugar alcohols, mainly sorbitol and mannitol. Both geometric and electronic effects were determined based on results of H2-TPR, H2- or CO-chemisorption, and XPS analyses after Cu was added to Ru. The addition of Cu to Ru caused blocking of active Ru surface and electron transfer between Ru and Cu. The intimate interaction between Ru and Cu formed RuCu bimetallic clusters which expedited hydrogen spillover from Ru to Cu. The highest yield of target sugar alcohols of 47.4% was obtained when 5 wt% of Ru and 1 wt% of Cu supported on nitric acid-treated activated carbon reacted at 180 °C for 2 h. The RuCu bimetallic catalyst exhibited deactivation upon repeated reactions due to the carbon deposition on the catalyst.
Hydrogenolysis of sorbitol into valuable C3-C2 alcohols at low H2 pressure promoted by the heterogeneous Pd/Fe3O4 catalyst
Gumina, Bianca,Mauriello, Francesco,Pietropaolo, Rosario,Galvagno, Signorino,Espro, Claudia
, p. 152 - 160 (2018/02/17)
The hydrogenolysis of sorbitol and various C5-C3 polyols (xylitol; erythritol; 1,2- 1,4- and 2,3-butandiol; 1,2-propandiol; glycerol) have been investigated at low molecular hydrogen pressure (5 bar) by using Pd/Fe3O4, as heterogeneous catalyst and water as the reaction medium. Catalytic experiments show that the carbon chain of polyols is initially shortened through dehydrogenation/decarbonylation and dehydrogenation/retro-aldol mechanisms followed by a series of cascade reactions that include dehydrogenation/decarbonylation and dehydration/hydrogenation processes. At 240 °C, sorbitol is fully converted into lower alcohols with ethanol being the main reaction product in liquid phase.
Preparation method of gamma-acetyl n-propanol
-
Paragraph 0036; 0037, (2017/12/09)
The invention discloses a preparation method of gamma-acetyl n-propanol. The method includes the steps of (1) adding the hydrolysate of plant fiber or xylose and other raw materials into a reaction still, adding a two-phase reactive solvent and a catalyst, inletting hydrogen, and heating the reaction still to react for several hours; (2) carrying out standing, liquid separation and then solid-liquid separation on reaction materials in the reaction still, obtaining water phase, oil phase and the catalyst, and recycling the catalyst for reutilization; (3) concentrating water phase products, extracting 1, 4-pentanediol in the oil phase, mixing with the concentrated solution, and carrying out further separation to obtain a crude product of 1, 4-pentanediol; (4) pumping the crude product of 1, 4-pentanediol obtained from the water phase and the oil phase in step (3) to a fixed bed reactor, carrying out dehydrogenation to produce gamma-acetyl n-propanol under the action of a catalytic dehydrogenation catalyst or an oxydehydrogenation catalyst. According to the preparation method, raw materials have extensive sources, the production cost is low, no inorganic acid system is used, and the reaction process is environment-friendly.
CTAB-assisted sol-microwave method for fast synthesis of mesoporous TiO2 photocatalysts for photocatalytic conversion of glucose to value-added sugars
Payormhorm, Jiraporn,Chuangchote, Surawut,Laosiripojana, Navadol
, p. 546 - 555 (2017/09/01)
Fabrication technique is an important factor for development of catalysts. Titanium dioxide (TiO2) is one of efficient photocatalysts. In this work, we firstly report the fabrication of TiO2 nanoparticles by sol-microwave method with cetyltrimethylammonium bromide (CTAB) surfactant. Absence of surfactant, microwave treatment significantly reduced the cluster sizes of TiO2, but high aggregations of TiO2 particles were observed. CTAB has great impact on morphology, cluster size and mesoporous structure of TiO2. Therefore, surface area of TiO2 synthesized by sol-microwave method with 0.108 M CTAB increased from 15.97 to 37.60 m2/g. Photocatalytic activity of TiO2 was tested via the glucose conversion to produce value-added chemicals (gluconic acid, xylitol, arabinose and formic acid). It was found that surface area, mesoporous structure and pore size of TiO2 are crucial properties for glucose conversion and product distribution. From the reaction test, 0.108 M CTAB/MW-TiO2 achieved the highest glucose conversion (62.28%).
Xylitol Hydrogenolysis over Ruthenium-Based Catalysts: Effect of Alkaline Promoters and Basic Oxide-Modified Catalysts
Rivière, Maxime,Perret, Noémie,Cabiac, Amandine,Delcroix, Damien,Pinel, Catherine,Besson, Michèle
, p. 2145 - 2159 (2017/06/28)
The aqueous-phase hydrogenolysis of xylitol into glycols over Ru/C was performed in the presence and absence of a wide range of concentrations of Ca(OH)2 to investigate the reaction pathway. Without base, epimerization and cascade decarbonylation were the predominant reactions with high selectivities to C5 and C4 alditols and light alkanes at full conversion. Glycol production was obtained by the addition of Ca(OH)2 to promote the retro-aldol reaction. It competed with reactions without base and became the main reaction for a OH?/ xylitol molar ratio Rmol(OH/xylitol) of 0.13, and high selectivities to glycols (56 %) and glycerol (16 %) were observed. However, lactate was a byproduct at up to 27 % with a high base amount (Rmol(OH/xylitol)=0.68). Bifunctional Ru/metal oxide/C catalysts (metal: Zn, Sn, Mn, Sr, W) were synthesized and were able to cleave the C?C bond into glycols without a base promoter. The 3.1 wt %Ru/MnO(4.5 %)/C catalyst was the most active (220 h?1) with reasonable selectivity to glycols (22 %) and glycerol (10 %) and a low production of lactate (1 %). Nevertheless, metal oxide leaching of the catalyst was observed likely because of the production of traces of lactate.
Selective C?O Bond Cleavage of Sugars with Hydrosilanes Catalyzed by Piers’ Borane Generated In Situ
Zhang, Jianbo,Park, Sehoon,Chang, Sukbok
supporting information, p. 13757 - 13761 (2017/10/09)
Described herein is the selective reduction of sugars with hydrosilanes catalyzed by using Piers’ borane [(C6F5)2BH] generated in situ. The hydrosilylative C?O bond cleavage of silyl-protected mono- and disaccharides in the presence of a (C6F5)2BH catalyst, generated in situ from (C6F5)2BOH, takes place with excellent chemo- and regioselectivities to provide a range of polyols. A study of the substituent effects of sugars on the catalytic activity and selectivity revealed that the steric environment around the anomeric carbon (C1) is crucial.