88-15-3Relevant articles and documents
Effects of oligothiophene π-bridge length on physical and photovoltaic properties of star-shaped molecules for bulk heterojunction solar cells
Min, Jie,Luponosov, Yuriy N.,Baran, Derya,Chvalun, Sergei N.,Shcherbina, Maxim A.,Bakirov, Artem V.,Dmitryakov, Petr V.,Peregudova, Svetlana M.,Kausch-Busies, Nina,Ponomarenko, Sergei A.,Ameri, Tayebeh,Brabec, Christoph J.
, p. 16135 - 16147 (2014)
The preparation of four different star-shaped donor (D)-π-acceptor (A) small molecules (N(Ph-1T-DCN-Me)3, N(Ph-2T-DCN-Me)3, N(Ph-2T-DCN-Hex)3and N(Ph-3T-DCN-Hex)3) possessing various oligothiophene π-bridge lengths and their use in solution-processed bulk heterojunction small molecule solar cells is reported. Optical and electrochemical data show that increasing oligothiophene π-bridge length leads to a decrease of the optical band gap due to a parallel increase of the highest occupied molecular orbital (HOMO) level. Furthermore, subtle modifications of a molecular π-bridge length strongly affect the thermal behavior, solubility, crystallization, film morphology and charge carrier mobility, which in turn significantly change the device performance. Although the moderately increasing oligothiophene π-bridge length uplifts the HOMO level, it nevertheless induces an increase of the efficiency of the resulting solar cells due to a simultaneous improvement of the short circuit current (Jsc) and fill factor (FF). The study demonstrates that such an approach can represent an interesting tool for the effective modulation of the photovoltaic properties of the organic solar cells (OSCs) at a moderate cost.
Effects of acid-modified HBEA zeolites on thiophene acylation and the origin of deactivation of zeolites
Chen, Zhihua,Feng, Yuefei,Tong, Tianxia,Zeng, Aiwu
, p. 92 - 98 (2014)
The liquid phase Friedel-Crafts acylation of thiophene with acetic anhydride over HBEA zeolites modified by hydrochloric, nitric, and acetic acid was investigated in a trickle bed reactor. The catalytic stability of the HBEA zeolite was doubled after treatment with the hydrochloric and nitric acids due to the increase of the ratio of Broensted to Lewis acid sites, the surface area, and the average pore diameter. The deactivated zeolites can be regenerated by calcination in a muffle furnace and the superior reusability of the zeolite HBEA was demonstrated after nine cycles. Moreover, the carbon deposit was proved to be one of the main reasons for the deactivation by using 13C NMR MAS, 27Al NMR MAS, and TGA.
High luminescence quantum yields and long luminescence lifetime from Eu(III) complex containing two crystal water based on a new β-diketonate ligand
Sun, Youyi,Gao, Jiangang,Zheng, Zhi,Su, Wei,Zhang, Qijin
, p. 977 - 980 (2006)
New members of family of Eu(III) complex based on the thenoylacetophenone have been synthesized and characterized. The compounds were found for high metal luminescence quantum yields and long luminescence lifetime, especially for compound with two crystal water, corresponding with other compounds containing two crystal water. The result is attributed to high molar absorption coefficients of the Eu(III) complex according to UV-vis and emission spectra. The high molar absorption coefficients balance quenching effect from O{single bond}H oscillators of water contained in compound.
Hydration of Alkynes to Ketones with an Efficient and Practical Polyoxomolybdate-based Cobalt Catalyst
Xie, Ya,Wang, Jingjing,Wang, Yunyun,Han, Sheng,Yu, Han
, p. 4985 - 4989 (2021/10/12)
Hydration of alkynes to ketones is one of the most atom economical and universal methods for the synthesis of carbonyl compounds. However, the basic reaction usually requires organic ligand catalysts or harsh reaction conditions to insert oxygen into the C≡C bond. Here, we report an inorganic ligand supported cobalt (III) catalyst, (NH4)3[CoMo6O18(OH)6], which is supported by a central cobalt (III) mononucleus and a ring-shaped pure inorganic ligand composed of six MoVIO6 octahedrons to avoid the disadvantages of expensive and unrecyclable organic ligand catalysts or noble metal catalysts. Under mild conditions, the cobalt (III) catalyst can be used for the hydration of alkynes to ketones. The catalyst is non-toxic, green, and environment friendly. The catalyst can be recycled at least six times with high activity. According to control experiments, a reasonable mechanism is provided.
Method for oxidative cracking of compound containing unsaturated double bonds
-
Paragraph 0108-0114; 0173-0175, (2021/07/09)
The invention relates to a method for oxidative cracking of a compound containing unsaturated double bonds. The method comprises the following steps: (A) providing a compound (I) containing unsaturated double bonds, a trifluoromethyl-containing reagent and a catalyst, wherein the catalyst is shown as a formula (II): M(O)mL1yL2z (II), M, L1, L2, m, y, z, R1, R2 and R3 being defined in the specification; and (B) mixing the compound containing the unsaturated double bonds and the trifluoromethyl-containing reagent, and performing an oxidative cracking reaction on the compound containing the unsaturated double bonds in the presence of air or oxygen by using the catalyst to obtain a compound represented by formula (III),.
METHOD FOR OXIDATIVE CLEAVAGE OF COMPOUNDS WITH UNSATURATED DOUBLE BOND
-
Paragraph 0071, (2021/07/10)
A method for oxidative cleavage of a compound with an unsaturated double bond is provided. The method includes the steps of: (A) providing a compound (I) with an unsaturated double bond, a trifluoromethyl-containing reagent, and a catalyst; wherein, the catalyst is represented by Formula (II): M(O)mL1yL2z??(II);wherein, M, L1, L2, m, y, z, R1, R2 and R3 are defined in the specification; and(B) mixing the compound with an unsaturated double bond and the trifluoromethyl-containing reagent to perform an oxidative cleavage of the compound with the unsaturated double bond by using the catalyst in air or under oxygen atmosphere condition to obtain a compound represented by Formula (III):
METHOD FOR OXIDATIVE CLEAVAGE OF COMPOUNDS WITH UNSATURATED DOUBLE BOND
-
Paragraph 0053-0056, (2021/03/19)
A method for oxidative cleavage of a compound with an unsaturated double bond is provided. The method comprises the following step: (A) providing a compound (I) with an unsaturated double bond, a reagent with trifluoromethyl, and a catalyst; wherein the catalyst is represented by the following formula (II): M(O)mL1yL2z (II); wherein, M, L1, L2, m, y, z, R1, R2 and R3 are defined in the specification; and (B) mixing the compound with an unsaturated double bond and the reagent with a trifluoromethyl to perform an oxidation of the compound with the unsaturated double bond by using the catalyst at air or an oxygen condition to get a compound presented as formula (III):
Selective oxidation of alkenes to carbonyls under mild conditions
Huo, Jie,Xiong, Daokai,Xu, Jun,Yue, Xiaoguang,Zhang, Pengfei,Zhang, Yilan
supporting information, p. 5549 - 5555 (2021/08/16)
Herein, a practical and sustainable method for the synthesis of aldehydes, ketones, and carboxylic acids from an inexpensive olefinic feedstock is described. This transformation features very sustainable and mild conditions and utilizes commercially available and inexpensive tetrahydrofuran as the additive, molecular oxygen as the sole oxidant and water as the solvent. A wide range of substituted alkenes were found to be compatible, providing the corresponding carbonyl compounds in moderate-to-good yields. The control experiments demonstrated that a radical mechanism is responsible for the oxidation reaction.
Aryl aldiketone and synthesis method thereof
-
Paragraph 0028, (2021/09/26)
The invention discloses an aryl aldehyde ketone and a synthesis method thereof, wherein an aryl aldehyde is synthesized from cheap olefin as a raw material. A commercially available inexpensive olefin is used as a raw material, ether is used as an additive, molecular oxygen serves as a sole oxidizing agent, water is used as a solvent, and the aldehyde and ketone are synthesized by column chromatography under a photocatalytic condition. The invention has the advantages of mild reaction conditions, green and environmental protection, simple experimental operation, good reaction selectivity, high product yield and the like.
Pd-catalyzed oxidative homocoupling of arylboronic acids in WEPA: A sustainable access to symmetrical biaryls under added base and ligand-free ambient conditions
Appa, Rama Moorthy,Lakshmidevi, Jangam,Naidu, Bandameeda Ramesh,Venkateswarlu, Katta
, (2021/01/11)
Symmetrical and unsymmetrical biaryls comprises a diverse class of biologically eloquent organic compounds. We herein report, a quick and eco-friendly protocol for the synthesis of biaryls by an oxidative (aerobic) homocoupling of arylboronic acids (ABAs) using Pd(OAc)2 in water extract of pomogranate ash (WEPA) as an efficient agro-waste(bio)-derived aqueous (basic) media. The reactions were executed at ambient aerobic conditions in the absence of external base and ligand to result symmetrical biaryls in excellent yields. The use of renewable media with an effective exploitation of waste, short reaction times, excellent yields of products, easy separation of the products, unnecessating the external base, oxidant, ligand or volatile organic solvents and ambient reaction conditions are the vital insights of the present protocol.