98-85-1Relevant articles and documents
A Convenient and Stable Heterogeneous Nickel Catalyst for Hydrodehalogenation of Aryl Halides Using Molecular Hydrogen
Anwar, Muhammad,Beller, Matthias,Dastgir, Sarim,Junge, Kathrin,Leonard, David K.,Ryabchuk, Pavel
, (2022/02/03)
Hydrodehalogenation is an effective strategy for transforming persistent and potentially toxic organohalides into their more benign congeners. Common methods utilize Pd/C or Raney-nickel as catalysts, which are either expensive or have safety concerns. In this study, a nickel-based catalyst supported on titania (Ni-phen@TiO2-800) is used as a safe alternative to pyrophoric Raney-nickel. The catalyst is prepared in a straightforward fashion by deposition of nickel(II)/1,10-phenanthroline on titania, followed by pyrolysis. The catalytic material, which was characterized by SEM, TEM, XRD, and XPS, consists of nickel nanoparticles covered with N-doped carbon layers. By using design of experiments (DoE), this nanostructured catalyst is found to be proficient for the facile and selective hydrodehalogenation of a diverse range of substrates bearing C?I, C?Br, or C?Cl bonds (>30 examples). The practicality of this catalyst system is demonstrated by the dehalogenation of environmentally hazardous and polyhalogenated substrates atrazine, tetrabromobisphenol A, tetrachlorobenzene, and a polybrominated diphenyl ether (PBDE).
Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base–Metal Catalysis
Newar, Rajashree,Akhtar, Naved,Antil, Neha,Kumar, Ajay,Shukla, Sakshi,Begum, Wahida,Manna, Kuntal
supporting information, p. 10964 - 10970 (2021/03/29)
We report a strategy to develop heterogeneous single-site enantioselective catalysts based on naturally occurring amino acids and earth-abundant metals for eco-friendly asymmetric catalysis. The grafting of amino acids within the pores of a metal-organic framework (MOF), followed by post-synthetic metalation with iron precursor, affords highly active and enantioselective (>99 % ee for 10 examples) catalysts for hydrosilylation and hydroboration of carbonyl compounds. Impressively, the MOF-Fe catalyst displayed high turnover numbers of up to 10 000 and was recycled and reused more than 15 times without diminishing the enantioselectivity. MOF-Fe displayed much higher activity and enantioselectivity than its homogeneous control catalyst, likely due to the formation of robust single-site catalyst in the MOF through site-isolation.
New Understanding of Selective Aerobic Oxidation of Ethylbenzene Catalyzed by Nitrogen-doped Carbon Nanotubes
Su, Yongzhao,Li, Yuhang,Chen, Zhicheng,Huang, Jiangnan,Wang, Hongjuan,Yu, Hao,Cao, Yonghai,Peng, Feng
, p. 646 - 655 (2020/12/04)
Selective aerobic oxidation of hydrocarbons undergoes a free-radical chain reaction to yield corresponding value-added products is the significant process in the chemical industry. Nanocarbons with heteroatoms doping as free-metal catalysts have been prov
Mixed hetero-/homogeneous TiO2/N-hydroxyimide photocatalysis in visible-light-induced controllable benzylic oxidation by molecular oxygen
Krylov, Igor B.,Lopat'eva, Elena R.,Nikishin, Gennady I.,Subbotina, Irina R.,Terent'ev, Alexander O.,Yu, Bing
, p. 1700 - 1711 (2021/06/28)
Homogeneous and heterogeneous types of catalysis are frequently considered as separate disciplines or even opposed to each other. In the present work, a new type of mixed hetero-/homogeneous catalysis was demonstrated for the case of selective alkylarene
Room Temperature Aerobic Peroxidation of Organic Substrates Catalyzed by Cobalt(III) Alkylperoxo Complexes
Chen, Yunzhou,Shi, Huatian,Lee, Chi-Sing,Yiu, Shek-Man,Man, Wai-Lun,Lau, Tai-Chu
supporting information, p. 14445 - 14450 (2021/09/18)
Room temperature aerobic oxidation of hydrocarbons is highly desirable and remains a great challenge. Here we report a series of highly electrophilic cobalt(III) alkylperoxo complexes, CoIII(qpy)OOR supported by a planar tetradentate quaterpyridine ligand that can directly abstract H atoms from hydrocarbons (R′H) at ambient conditions (CoIII(qpy)OOR + R′H → CoII(qpy) + R′?+ ROOH). The resulting alkyl radical (R′?) reacts rapidly with O2to form alkylperoxy radical (R′OO?), which is efficiently scavenged by CoII(qpy) to give CoIII(qpy)OOR′ (CoII(qpy) + R′OO?→ CoIII(qpy)OOR′). This unique reactivity enables CoIII(qpy)OOR to function as efficient catalysts for aerobic peroxidation of hydrocarbons (R′H + O2→ R′OOH) under 1 atm air and at room temperature.
Borane evolution and its application to organic synthesis using the phase-vanishing method
Soga, Nene,Yoshiki, Tomo,Sato, Aoi,Kawamoto, Takuji,Ryu, Ilhyong,Matsubara, Hiroshi
supporting information, (2021/03/26)
Although borane is a useful reagent, it is difficult to handle. In this study, borane was generated in situ from NaBH4 or nBu4NBH4 with several oxidants using a phase-vanishing (PV) method. The borane generated was directly reacted with alkenes, affording the desired alcohols in good yields after oxidation with H2O2 under basic conditions. The selective reduction of carboxylic acids with the evolved borane was examined. The organoboranes generated by the PV method successfully underwent Suzuki–Miyaura coupling. Using this PV system, reactions with borane can be carried out easily and safely in a common test tube.
Fe-Catalyzed Anaerobic Mukaiyama-Type Hydration of Alkenes using Nitroarenes
Bhunia, Anup,Bergander, Klaus,Daniliuc, Constantin Gabriel,Studer, Armido
supporting information, p. 8313 - 8320 (2021/03/08)
Hydration of alkenes using first row transition metals (Fe, Co, Mn) under oxygen atmosphere (Mukaiyama-type hydration) is highly practical for alkene functionalization in complex synthesis. Different hydration protocols have been developed, however, control of the stereoselectivity remains a challenge. Herein, highly diastereoselective Fe-catalyzed anaerobic Markovnikov-selective hydration of alkenes using nitroarenes as oxygenation reagents is reported. The nitro moiety is not well explored in radical chemistry and nitroarenes are known to suppress free radical processes. Our findings show the potential of cheap nitroarenes as oxygen donors in radical transformations. Secondary and tertiary alcohols were prepared with excellent Markovnikov-selectivity. The method features large functional group tolerance and is also applicable for late-stage chemical functionalization. The anaerobic protocol outperforms existing hydration methodology in terms of reaction efficiency and selectivity.
Me3SI-promoted chemoselective deacetylation: a general and mild protocol
Gurawa, Aakanksha,Kashyap, Sudhir,Kumar, Manoj
, p. 19310 - 19315 (2021/06/03)
A Me3SI-mediated simple and efficient protocol for the chemoselective deprotection of acetyl groups has been developedviaemploying KMnO4as an additive. This chemoselective deacetylation is amenable to a wide range of substrates, tolerating diverse and sensitive functional groups in carbohydrates, amino acids, natural products, heterocycles, and general scaffolds. The protocol is attractive because it uses an environmentally benign reagent system to perform quantitative and clean transformations under ambient conditions.
Insight into the chemoselective aromatic: Vs. side-chain hydroxylation of alkylaromatics with H2O2catalyzed by a non-heme imine-based iron complex
Ticconi, Barbara,Capocasa, Giorgio,Cerrato, Andrea,Di Stefano, Stefano,Lapi, Andrea,Marincioni, Beatrice,Olivo, Giorgio,Lanzalunga, Osvaldo
, p. 171 - 178 (2021/01/28)
The oxidation of a series of alkylaromatic compounds with H2O2 catalyzed by an imine-based non-heme iron complex prepared in situ by reaction of 2-picolylaldehyde, 2-picolylamine, and Fe(OTf)2 in a 2?:?2?:?1 ratio leads to a marked chemoselectivity for aromatic ring hydroxylation over side-chain oxidation. This selectivity is herein investigated in detail. Side-chain/ring oxygenated product ratio was found to increase upon decreasing the bond dissociation energy (BDE) of the benzylic C-H bond in line with expectation. Evidence for competitive reactions leading either to aromatic hydroxylation via electrophilic aromatic substitution or side-chain oxidation via benzylic hydrogen atom abstraction, promoted by a metal-based oxidant, has been provided by kinetic isotope effect analysis. This journal is
Bioinspired Heterobimetallic Photocatalyst (RuIIchrom-FeIIIcat) for Visible-Light-Driven C-H Oxidation of Organic Substrates via Dioxygen Activation
Goswami, Tapas,Kumar, Arun,Kumar, Sushil,Le Poul, Nicolas,Nautiyal, Divyanshu,Singh, Siddhant,Thetiot, Franck
supporting information, p. 16059 - 16064 (2021/11/13)
We report a bioinspired heterobimetallic photocatalyst RuIIchrom-FeIIIcat and its relevant applications toward visible-light-driven C-H bond oxidation of a series of hydrocarbons using O2 as the O-atom source. The RuII center absorbs visible light near 460 nm and triggers a cascade of electrons to FeIII to afford a catalytically active high-valent FeIV═O species. The in situ formed FeIV═O has been employed for several high-impact oxidation reactions in the presence of triethanolamine (TEOA) as the sacrificial electron donor.