One-Pot, Three-Component Synthesis of Arylbenzimidazoles
azoles through the three-component reactions of 4-bromo- pensive and reusable catalyst, no need for an additional li-
1,2-diaminobenzene, (4-bromophenyl)methanol, and aryl- gand, the use of water as a solvent, and environmental
boronic acids. As shown in Table 6, desired products 6a–j friendliness.
were isolated in moderate to good yields by using aryl-
boronic acids (3 equiv.) and the Pd/C catalyst (8 mol-%).
Electron-donating arylboronic acids reacted to give the cor-
responding products, and the yields were clearly higher than
those obtained with electron-withdrawing arylboronic ac-
ids.
Experimental Section
General Procedure for the Synthesis of 2-Biaryl-5-arylbenzimid-
azoles: A Schlenk tube containing a mixture of the 4-bromo-
1,2-diaminobenzene
(0.5 mmol),
(4-bromophenyl)methanol
(0.55 mmol), arylboronic acid (1.5 mmol), NH4HCO3 (4 mmol),
and Pd/C (8 mol-% as Pd metal) in water (3 mL) was evacuated
and charged with nitrogen. The mixture was heated at 100 °C for
24 h and then cooled to room temperature. After vacuum evapora-
tion of the solvent, the resulting residue was purified by silica gel
column chromatography to provide the desired product.
Table 6. Three-component reaction for the synthesis of 2-biaryl-5-
arylbenzimidazoles.[a]
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, characterization data, and copies of the
1H NMR and 13C NMR spectra of all key intermediates and final
products.
Acknowledgments
We are grateful to the Innovation Scientists and Technicians
Troop Construction Projects of Henan Province (grant number
154100510015) and the Science Foundation of Henan Education
Department (grant numbers 14A150049 and 15B150008).
[1] a) D. A. Horton, G. T. Bourne, M. L. Smythe, Chem. Rev.
2003, 103, 893; b) M. Alamgir, D. St. C. Black, N. Kumar, Top.
Heterocycl. Chem. 2007, 9, 87; c) Y. Bansal, O. Silakari, Bioorg.
Med. Chem. 2012, 20, 6208.
[2] a) C. Mukhopadhyay, P. K. Tapaswi, Tetrahedron Lett. 2008,
49, 6237; b) K. Bahrami, M. M. Khodaei, A. Nejati, Green
Chem. 2010, 12, 1237; c) J. F. Xiong, J. X. Li, G. Z. Mo, J. P.
Huo, J. Y. Liu, X. Y. Chen, Z. Y. Wang, J. Org. Chem. 2014,
79, 11619; d) H. Sharma, N. Singh, D. O. Jang, Green Chem.
2014, 16, 4922; e) M. R. Marri, S. Peraka, A. K. Macharla, N.
Mameda, S. Kodumuri, N. Nama, Tetrahedron Lett. 2014, 55,
6520.
[3] a) N. Zheng, K. W. Anderson, X. Huang, H. N. Nguyen, S. L.
Buchwald, Angew. Chem. Int. Ed. 2007, 46, 7509; Angew.
Chem. 2007, 119, 7653; b) G. Brasche, S. L. Buchwald, Angew.
Chem. Int. Ed. 2008, 47, 1932; Angew. Chem. 2008, 120, 1958;
c) P. Saha, M. A. Ali, P. Ghosh, T. Punniyamurty, Org. Biomol.
Chem. 2010, 8, 5692; d) L. C. R. Carvalho, E. Fernandes,
M. M. B. Marques, Chem. Eur. J. 2011, 17, 12544; e) H. Baars,
A. Beyer, S. V. Kohlhepp, C. Bolm, Org. Lett. 2014, 16, 536; f)
D. Mahesh, P. Sadhu, T. Punniyamurthy, J. Org. Chem. 2015,
80, 1644; g) S. K. Alla, R. K. Kumar, P. Sadhu, T. Punniyamur-
thy, Org. Lett. 2013, 15, 1334.
[a] Reaction conditions: Pd/C (8 mol-%), 4-bromo-1,2-diamino-
benzene (0.5 mmol), (4-bromophenyl)methanol (0.55 mmol), aryl-
boronic acid (1.5 mmol), NH4HCO3 (4 mmol), water (3 mL),
100 °C, 24 h, yields of the isolated products are given.
[4] a) M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams, Adv.
Synth. Catal. 2007, 349, 1555; b) G. Guillena, D. J. Ramón, M.
Yus, Chem. Rev. 2010, 110, 1611.
[5] a) H. Y. Kuo, Y. H. Liu, S. M. Peng, S. T. Liu, Organometallics
2012, 31, 7248; b) H. Y. Kuo, B. S. Liao, S. T. Liu, Synthesis
2013, 45, 189; c) T. Hille, T. Irrgang, R. Kempe, Chem. Eur. J.
2014, 20, 5569.
[6] a) A. J. Blacker, M. M. Farah, M. I. Hall, S. P. Marsden, O.
Saidi, J. M. J. Williams, Org. Lett. 2009, 11, 2039; b) G. M.
Raghavendra, A. B. Ramesha, C. N. Revanna, K. N. Nan-
deesh, K. Mantelingu, K. S. Rangappa, Tetrahedron Lett. 2011,
52, 5571; c) R. Ramachandran, G. Prakash, S. Selvamurugan,
P. Viswanathamurthi, J. G. Maleckib, V. Ramkumarc, Dalton
Trans. 2014, 43, 7889.
Conclusions
In summary, we developed a green and sustainable
method for the synthesis of 2-arylbenzimidazoles from
alcohols and 1,2-diaminoarenes in water catalyzed by recy-
clable Pd/C. This method was also successfully applied to
the one-pot, three-component synthesis of 2,5-diarylbenz-
imidazoles through hydrogen-transfer and Suzuki reactions.
The advantages of the present process include operational
simplicity, high efficiency, convenience, the use of an inex-
Eur. J. Org. Chem. 2015, 7427–7432
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7431