H.L. Shimp et al. / Tetrahedron 64 (2008) 6831–6837
6837
4.2. Representative procedure for the stereoselective
synthesis of 1,4-dienes
138.5, 138.1, 132.6, 130.7, 130.6, 129.2, 129.1, 126.6, 116.4, 113.69,
113.65, 72.44, 72.39, 69.7, 68.7, 55.21, 55.20, 30.2, 28.8, 26.9, 23.1; IR
(thin film, NaCl) 2957, 2864,1613,1513,1464,1360,1302,1248,1173,
1097, 1037, 820 cmꢂ1; LRMS (EI, Na) calcd for C29H38O4Na, 473.28
m/z (MþNa); observed, 473.5 m/z (MþNa)þ.
4.2.1. Synthesis of (2E,5Z)-8-(4-methoxybenzyloxy)-5-(2-(4-
methoxybenzyloxy)ethyl)-2-methylocta-2,5-dien-1-ol, 17
To a ꢂ78 ꢃC solution of alkyne 13 (200 mg, 0.56 mmol) in 3.7 mL
Acknowledgements
of PhMe were added 850
0.85 mmol) and 860
mL of ClTi(Oi-Pr)3 (1.0 M in hexanes,
L of c-C5H9MgCl (1.96 M in Et2O, 1.69 mmol)
m
We gratefully acknowledge financial support of this work by the
American Cancer Society (RSG-06-117-–01), the American Chem-
ical Society (PRF-45334-G1), the Arnold and Mabel Beckman
Foundation, Boehringer Ingelheim, Eli Lilly & Co., and the National
Institutes of Health – NIGMS (GM80266). H.L.S. acknowledges
support from BMS in the form of a graduate student fellowship.
dropwise via a gas-tight syringe. The resulting clear, yellow solution
turned dark reddish brownwhilewarming slowly to ꢂ30 ꢃC over 1 h.
The reaction mixture was stirred at ꢂ30 ꢃC for 1 h and then cooled to
ꢂ78 ꢃC. To
a
separate ꢂ78 ꢃC solution of allene 16 (69 mg,
0.39 mmol) in 1.0 mL PhMe was added 160 mL of nBuLi (2.45 M in
hexanes, 0.39 mmol) dropwise via gas-tight syringe. The resulting
solution was stirred for 15 min, removed from the cold bath, and
added to the ꢂ78 ꢃC titanium solution dropwise via cannula. After
warming slowly to 0 ꢃC over 2 h, the reaction was quenched with
5 mL of satd NH4Cl solution. The mixture was warmed to room
temperature before extracting with EtOAc (3ꢄ15 mL). The combined
organic layer was washed with satd NaHCO3 solution (1ꢄ30 mL),
brine (1ꢄ30 mL) and dried over anhydrous Na2SO4. Flash column
chromatographyof thecrude material(20%EtOAc/hexanes, then50%
EtOAc/hexanes) provided 127 mg (74%) of diene 17 as a clear, color-
less oil. A small portion was further purified by HPLC [EtOAc/hex-
anes: gradient from 35% to 55% (0–20 min, 25 mL/min) on
a Microsorb (Si 80-120-C5 H410119) column] to obtain a sample for
Supplementary data
Complete experimental details for all preparative procedures
along with spectral data for all products are provided. Supple-
mentary data associated with this article can be found in the online
References and notes
1. For a recent review of palladium-catalyzed cross-coupling in total synthesis,
see: Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44,
4442–4489.
2. For recent reviews of such metal-mediated coupling, see: (a) Titanium and
Zirconium in Organic Synthesis; Marek, I., Ed.; Wiley-VCH: Weinheim, 2002;
p 512; (b) Montgomery, J. Angew. Chem., Int. Ed. 2004, 43, 3890–3908; (c) Trost,
B. M.; Toste, F. D.; Pinkerson, A. B. Chem. Rev. 2001, 101, 2067–2096; (d)
Buchwald, S. L.; Nielsen, R. B. Chem. Rev. 1988, 88, 1047–1058.
3. For alkyne–alkyne cross-coupling, see: (a) Ryan, J.; Micalizio, G. C. J. Am. Chem.
Soc. 2006, 128, 2764–2765; (b) Shimp, H. L.; Micalizio, G. C. Org. Lett. 2005, 7,
5111–5114; For alkene–alkyne cross-coupling, see: (c) Reichard, H. A.; Micalizio,
G. C. Angew. Chem., Int. Ed. 2007, 46, 1440–1443; For allylic alcohol–alkyne
cross-coupling, see: (d) Kolundzic, F.; Micalizio, G. C. J. Am. Chem. Soc. 2007, 129,
15112–15113; For alkyne–imine cross-coupling, see: (e) McLaughlin, M.;
Takahashi, M.; Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46, 3912–3914; For
alkene–imine cross-coupling, see: (f) Takahashi, M.; Micalizio, G. C. J. Am. Chem.
Soc. 2007, 129, 7514–7516.
analyticalcharacterization.1HNMR(400 MHz, CDCl3)
d7.26–7.23(m,
4H), 6.89–6.85 (m, 4H), 5.42–5.37 (m,1H), 5.24 (t, J¼7.1 Hz,1H), 4.42
(s, 2H), 4.41 (s, 2H), 4.00 (d, J¼5.8 Hz, 2H), 3.80 (s, 3H), 3.80 (s, 3H),
3.46–3.39 (m, 4H), 2.75 (d, J¼7.3 Hz, 2H), 2.34 (dt, J¼14.7, 7.6 Hz, 2H),
2.33 (t, J¼7.3 Hz, 2H), 1.64 (s, 3H), 1.34 (t, J¼6.1 Hz, 1H); 13C NMR
(100 MHz, CDCl3)
d 159.1, 136.6, 136.0, 130.6, 130.5, 129.21, 129.16,
123.8, 123.1, 113.7, 77.2, 72.5, 69.8, 68.8, 68.6, 55.2, 35.7, 31.1, 28.6,
13.6; IR (thin film, NaCl) 3433, 2907, 2857, 1613, 1513, 1464, 1360,
1302,1173,1093,1035, 802 cmꢂ1;LRMS(EI,Na)calcd forC27H36O5Na,
463.26 m/z (MþNa); observed, 463.3 m/z (MþNa)þ.
4. For examples of metal-mediated cross-coupling of allenes and alkynes, see: (a)
Hideura, D.; Urabe, H.; Sato, F. Chem. Commun. 1998, 271–272; (b) Tanaka, R.;
Sasaki, M.; Sato, F.; Urabe, H. Tetrahedron Lett. 2005, 46, 329–332; (c) Suzuki, K.;
Imai, T.; Yamanoi, S.; Chino, M.; Matsumoto, T. Angew. Chem., Int. Ed. 1997, 36,
2469–2471; (d) Yamanoi, S.; Matsumoto, T.; Suzuki, K. Tetrahedron Lett. 1998,
39, 9727–9730; (e) Yamanoi, S.; Imai, T.; Matsumoto, T.; Suzuki, K. Tetrahedron
Lett. 1997, 38, 3031–3034; (f) Trost, B. M.; Kottirsch, G. J. Am. Chem. Soc. 1990,
112, 2816–2818; For examples of metal-mediated intramolecular coupling of
allenes with alkynes, see: (g) Kent, J. L.; Wan, H.; Brummond, K. M. Tetrahedron
Lett. 1995, 36, 2407–2410; (h) Brummond, K. M.; You, L. Tetrahedron 2005, 61,
6180–6185; (i) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc.
1996, 118, 9450–9451; (j) Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. J. Am.
Chem. Soc. 1999, 121, 5881–5898; (k) Urabe, H.; Takeda, T.; Hideura, D.; Sato, F.
J. Am. Chem. Soc. 1997, 119, 11295–11305; (l) Urabe, H.; Sato, F. Tetrahedron
Lett. 1998, 7329–7332.
4.3. Representative procedure for the stereoselective
synthesis of cross-conjugated trienes
4.3.1. Synthesis of (3E,5E)-1-(4-methoxybenzyloxy)-(4-(2-
methoxybenzyloxy)ethyl)-5-vinyl-7-methyl-3,5-octadiene, 37
To a ꢂ78 ꢃC solution of alkyne 13 (200 mg, 0.56 mmol) in 3.7 mL
of PhMe was added 850
0.85 mmol) and 860
mL of ClTi(Oi-Pr)3 (1.0 M in hexanes,
L of c-C5H9MgCl (1.96 M in Et2O, 1.68 mmol)
m
dropwise via a gas-tight syringe. The resulting clear, yellow solution
turned dark reddish brown while warming slowly to ꢂ30 ꢃC over
1 h. The reaction mixture was stirred at ꢂ30 ꢃC for 1 h and then
cooled to ꢂ78 ꢃC. To a separate ꢂ78 ꢃC solution of allene 36 (44 mg,
5. For a preliminary account, see: Shimp, H. L.; Micalizio, G. C. Chem. Commun.
2007, 4531–4533.
6. For an example of such a metal-mediated alkylation with allylic transposition,
see Ref. 3d.
0.39 mmol) in 1.0 mL PhMe was added 160
m
L of nBuLi (2.45 M in
hexanes, 0.39 mmol) dropwise via gas-tight syringe. The resulting
solution was stirred for 15 min, removed from the cold bath, and
added to the ꢂ78 ꢃC titanium solution dropwise via cannula. After
warming slowly to ꢂ30 ꢃC over 1 h, the reaction was quenched with
5 mL of satd NH4Cl solution. The mixture was warmed to room
temperature beforeextracting with EtOAc (3ꢄ15 mL). The combined
organic layer was washed with satd NaHCO3 solution (1ꢄ30 mL),
brine (1ꢄ30 mL) and dried over anhydrous Na2SO4. Flash column
chromatography of the crude material (5% EtOAc/hexanes, then 7.5%
EtOAc/hexanes) provided 121 mg (69%) of triene 37 as a clear, col-
7. (a) Vogel, E.; Ott, K. H.; Gajek, K. Liebigs Ann. Chem. 1961, 644, 172–188; (b)
Doering, W.; von, E.; Roth, W. R. Tetrahedron 1963, 19, 715–737; For an example
of a metallo-[3,3] rearrangement for isomerization of allylic alcohols, see: (c)
Chabardes, P.; Kuntz, E.; Varagnat, J. Tetrahedron 1977, 33, 1775–1783.
8. Winkler, J. D. Chem. Rev. 1996, 96, 167–176.
9. (a) Blomquist, A. T.; Verdol, J. A. J. Am. Chem. Soc. 1955, 77, 81–83; For related
studies, see: (b) Bailey, W. J.; Economy, J. J. Am. Chem. Soc. 1955, 76, 1133–1136;
(c) Bailey, W. J.; Economy, J.; Hermes, M. E. J. Org. Chem. 1962, 27, 3295–3299.
10. For recent examples, see: (a) Woo, S.; Squires, N.; Fallis, A. G. Org. Lett. 1999, 1,
573–575; (b) Kwon, O.; Park, S. B.; Schreiber, S. L. J. Am. Chem. Soc. 2002, 124,
13402–13404.
11. (a) Llerena, D.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1996, 37, 7027–7030; (b)
Yamazaki, T.; Urabe, H.; Sato, F. Tetrahedron Lett. 1998, 39, 7333–7336; (c) Brum-
mond, K. M.; Chen, H.; Sill, P.; You, L. J. Am. Chem. Soc. 2002, 124, 15186–15187.
12. (a) Tsuge, O.; Wada, E.; Kanemasa, S. Chem. Lett. 1983, 239–242; (b) Arisawa, M.;
Sugihara, T.; Yamaguchi, M. Chem. Commun. 1998, 2615–2616; (c) Shi, M.; Shao,
L.-X. Synlett 2004, 807–810; (d) Bradford, T. A.; Payne, A. D.; Willis, A. C.; Paddon-
Row, M. N.; Sherburn, M. S. Org. Lett. 2007, 9, 4861–4864. See also Ref. 10a.
13. Roush, W. R.; Barda, D. A. J. Am. Chem. Soc. 1997, 119, 7402–7403 and references
cited therein.
orless oil. 1H NMR (400 MHz, CDCl3)
d 7.26–7.21 (m, 4H), 6.88–6.83
(m, 4H), 6.53 (dd, J¼17.4, 10.6 Hz, 1H), 5.36 (t, J¼7.3 Hz, 1H), 5.15 (d,
J¼10.1 Hz, 1H), 5.13–5.06 (m, 2H), 4.42 (s, 2H), 4.37 (s, 2H), 3.78 (s,
3H), 3.78 (s, 3H), 3.46 (t, J¼7.1 Hz, 2H), 3.36 (t, J¼7.3 Hz, 2H), 2.74–
2.65 (m, 1H), 2.51 (t, J¼7.6 Hz, 2H), 2.42 (dt, J¼14.1, 7.3 Hz, 2H), 0.95
(d, J¼6.6 Hz, 6H); 13C NMR (100 MHz, CDCl3)
d 159.1, 159.0, 138.7,