C O M M U N I C A T I O N S
Table 2. Iron-Catalyzed Carbomagnesiation of 2,3-Allenoatesa
Scheme 3
time
(h)
yieldd of
entry
R1
R2
R3
R4
2 (%)
1b
2c
Ph
Ph
Ph
Ph
p-BrC6H4
p-BrC6H4
n-C7H15
n-C4H9
Ph
Ph
n-C7H15
Ph
n-C7H15
n-C4H9
n-C7H15
Ph
n-Pr
n-Pr
n-Pr
Me
n-Pr
Me
n-Pr
Bn
n-Pr
n-Pr
n-Pr
Me
n-Pr
H
H
n-Pr
n-Pr
Et (1a)
Me (1b)
Bn (1c)
Et (1d)
Et (1e)
Et (1f)
Et (1g)
Me (1h)
Et (1a)
Et (1a)
Et (1g)
Et (1d)
Et (1g)
Et (1i)
Me
Me
Me
Me
Me
Me
Me
Me
n-Bu
c-Hex
c-Hex
c-Hex
s-Bue
Ph
Ph
vinyl
vinyl
2
3
2
1.5
1
1.5
5
1.5
1
1.7
1
1
77 (2a)
86 (2b)
84 (2c)
88 (2d)
88 (2e)
88 (2f)
85 (2g)
85 (2h)
70 (2i)
86 (2j)
90 (2k)
78 (2l)
94 (1m)
63 (2n)
63 (2o)
82 (1p)
86 (1q)
3b
4
5
6c
Acknowledgment. Financial support from the international
program issued by National Natural Science Foundation of China,
theMajorStateBasicResearchDevelopmentProgram(2006CB806105),
and Cheung Kong Scholar Programme is greatly appreciated. This
work was conducted at Zhejiang University. We thank Mr. Guofei
Chen in this group for reproducing the results presented in entries
3 and 6 of Table 2.
7b
8
9b
10b
11b
12b
13b
14
15b
16b
17b
1
2
1
1
Et (1j)
Et (1a)
Et (1g)
Supporting Information Available: Spectroscopic data and general
procedure (PDF). This material is available free of charge via the
n-C7H15
1
a The reaction was conducted using 0.4 mmol of 2,3-allenoates, 3 equiv
of the Grignard reagents (solution in THF), and 2 mol % of Fe(acac)3 in 5
mL of toluene at -78 °C. b Fe(acac)3 (5 mol %) was used. c Fe(acac)3 (0.5
mol %) was used. d Isolated yield. e s-Butyl magnesium bromide was used.
References
(1) For a general overview on iron catalysis in organic chemistry, see: (a)
Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. ReV. 2004, 104, 6217.
(b) Fu¨rstner, A.; Martin, R. Chem. Lett. 2005, 34, 624.
(2) For some typical examples of iron-catalyzed addition reactions, see: (a)
Zhang, D.; Ready, J. M. J. Am. Chem. Soc. 2006, 128, 15050. (b)
Shirakawa, E.; Yamagami, T.; Kimura, T.; Yamaguchi, S.; Hayashi, T.
J. Am. Chem. Soc. 2005, 127, 17164. (c) Yamagami, T.; Shintani, R.;
Shirakawa, E.; Hayashi, T. Org. Lett. 2007, 9, 1045. (d) Li, R.; Wang, S.
R.; Lu, W. Org. Lett. 2007, 9, 2219. (e) Nakamura, M.; Hirai, A.;
Nakamura, E. J. Am. Chem. Soc. 2000, 122, 978. (f) Nakamura, M.;
Matsuo, K.; Inoue, T.; Nakamura, E. Org. Lett. 2003, 5, 1373. (g)
Fukuhara, K.; Urabe, H. Tetrahedron Lett. 2005, 46, 603.
Scheme 1
(3) For some typical examples of iron-catalyzed oxidation reactions, see: (a)
Manchen˜o, O. G.; Bolm, C. Org. Lett. 2006, 8, 2349. (b) Nakanishi, M.;
Bolm, C. AdV. Synth. Catal. 2007, 349, 861.
(4) For some typical examples of iron-catalyzed coupling reactions, see: (a)
Ottesen, L. K.; Ek, F.; Olsson, R. Org. Lett. 2006, 8, 1771. (b) Scheiper,
B.; Bonnekessel, M.; Krause, H.; Fu¨rstner, A. J. Org. Chem. 2004, 69,
3943. (c) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am. Chem.
Soc. 2004, 126, 3686. (d) Fu¨rstner, A.; Leitner, A.; Me´ndez, M.; Krause,
H. J. Am. Chem. Soc. 2002, 124, 13856. (e) Duplais, C.; Bures, F.;
Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem., Int.
Ed. 2004, 43, 2968. (f) Cahiez, G.; Habiak, V.; Duplais, C.; Moyeux, A.
Angew. Chem., Int. Ed. 2007, 46, 4364. (g) Bedford, R. B.; Betham, M.;
Bruce, D. W.; Danopoulos, A. A.; Frost, R. M.; Hird, M. J. Org. Chem.
2006, 71, 1104. (h) Nagano, T.; Hayashi, T. Org. Lett. 2004, 6, 1297. (i)
Tamura, M.; Kochi, J. J. Am. Chem. Soc. 1971, 93, 1487.
Scheme 2
(5) For some typical examples of iron-catalyzed cyclization reactions, see:
(a) Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J.
Am. Chem. Soc. 2006, 128, 13340. (b) Fu¨rstner, A.; Martin, R.; Majima,
K. J. Am. Chem. Soc. 2005, 127, 12236. (c) Komeyama, K.; Morimoto,
T.; Takaki, K. Angew. Chem., Int. Ed. 2006, 45, 2938. (d) Corey, E. J.;
Imai, N.; Zhang, H.-Y. J. Am. Chem. Soc. 1991, 113, 728.
(6) For some typical examples of iron-catalyzed allylic alkylation reactions,
see: (a) Plietker, B. Angew. Chem., Int. Ed. 2006, 45, 1469. (b) Plietker,
B. Angew. Chem., Int. Ed. 2006, 45, 6053.
(7) For some typical examples of iron-catalyzed asymmetric reactions, see:
(a) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, J.-C.; Xu, Z.-
H.; Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc. 2007, 129, 1494. (b)
Jankowska, J.; Paradowska, J.; Rakiel, B.; Mlynarski, J. J. Org. Chem.
2007, 72, 2228. For an iron-catalyzed hydrosilylation reaction, see: (c)
Nishiyama, H.; Furuta, A. Chem. Commun. 2007, 760.
(8) For most recent reviews on the chemistry of allenes, see: (a) Krause, N.,
Hashmi, A. S. K., Eds. Modern Allene Chemistry; Wiley-VCH: Weinheim,
Germany, 2004. (b) Ma, S. Chem. ReV. 2005, 105, 2829.
This magnesium dienolate 8a may also react with an alde-
hyde to afford the 1,2-addition product 10. Its reaction with
methyl chloroformate or acetyl chloride afforded 2-vinyl malo-
nate derivative 11 or â-ketoester derivative 12 efficiently
(Scheme 3).
In summary, we have developed an efficient regio- and ste-
reospecific iron-catalyzed conjugate addition of 2,3-allenoates with
1°- and 2°-alkyl, phenyl, or vinyl Grignard reagents. This protocol
introduces the R4 group from the Grignard reagents to the â-position
of the ester group with the R4 group trans to the R1 group at the
4-position in the remaining â,γ-carbon-carbon double bond. The
in situ formed magnesium dienolate may also react with different
electrophiles to prepare a series of compounds containing an allylic
quaternary carbon at the R-position of the ester group. Further
studies in this area are being conducted in our laboratory.
(9) (a) Berlan, J.; Battioni, J.-P.; Koosha, K. Bull. Soc. Chim. Fr. 1979, 3-4,
II-183. (b) Knight, J. G.; Ainge, S. W.; Baxter, C. A.; Eastman, T. P.;
Harwood, S. J. J. Chem. Soc., Perkin Trans. 1 2000, 3188. (c) Bryson, T.
A.; Smith, D. C.; Krueger, S. A. Tetrahedron Lett. 1977, 525. (d) Waizumi,
N.; Itoh, T.; Fukuyama, T. Tetrahedron Lett. 1998, 39, 6015. (e) Dieter,
R. K.; Lu, K. Tetrahedron Lett. 1999, 40, 4011. (f) Dieter, R. K.; Lu, K.;
Velu, S. E. J. Org. Chem. 2000, 65, 8715.
(10) For details, see Table S1 in the Supporting Information.
JA075750O
9
J. AM. CHEM. SOC. VOL. 129, NO. 47, 2007 14547