Herein, we wish to report a novel Lewis base assisted 2,3-
rearrangement of 1-cyclopropenylmethyl phosphinites lead-
ing to densely substituted cyclopropylphosphine deriva-
tives.5,6 This methodology represents a valuable alternative
to the existing approaches to phosphorylated cyclopropanes,
involving trapping of a cyclopropylmetal species with a
phosphorus electrophile, which are highly sensitive to steric
factors. The discovered unusual promoting effect of the
Lewis base additive and unique stereoelectronic control of
the selectivity by a very remote substituent are remarkable
and set this reaction apart from the majority of the previously
reported diastereoselective transformations of cyclopropenes,
which are governed by steric or directing effects.
Scheme 1
[2,3]-Sigmatropic rearrangements of both allylphosphites7
and allylphosphinites8 5 are well-known; they proceed
thermally (at 80-110 °C)9 via a concerted transition state
(TS1)11 to provide allylphosphine oxide 6 (Scheme 1, eq 3).
We hypothesized that the analogous transformation of
cyclopropenylphosphinite 7 into MCP 8 should proceed
under much milder conditions, urged forward by the sig-
nificant strain release10 accompanying migration of the
double bond (eq 4). Indeed, DFT computations11 of a putative
rearrangement of 7 into 8 suggested the reaction is highly
thermodynamically favorable (∆G ) -34 kcal/mol). How-
ever, the activation barrier for the rearrangement of cyclic
phosphinite 7 was unexpectedly high, comparable to that for
the reaction with acyclic substrate 5 (∆Gq ) 25 and 31 kcal/
mol, respectively).12 Geometry analysis of the transition state
TS2 (Scheme 1) suggested that the rather large ∆Gq value
for the transformation 7f8 is primarily associated with
severe distortion of the sp2-hybridized carbon rendering the
angle θ between the small cycle plane and the methylene
group abnormally small (137°). Introduction of substituents
at C-3 of cyclopropene led to further increase of the
activation barrier for the concerted reaction (eq 5). Thus,
∆Gq values for the rearrangement of the methyl- and phenyl-
substituted phosphinites 9a and 9b were higher than for the
parent system by 5 and 12 kcal/mol, respectively. The results
of theoretical modeling indicated that the thermal 2,3-
rearrangement of substituted cyclopropenylphosphinites would,
most likely, require heating to temperatures not compatible
with preservation of the fragile three-membered carbocycle.
Indeed, our attempts to perform thermal rearrangement of
phosphinite 11a were unsuccessful: prolonged refluxing in
toluene did not provide the expected phosphine oxide and
resulted in slow decomposition of the starting material (eq
6).
(5) For employment of cyclopropylphosphine derivatives in synthesis,
see, for example: (a) Molander, G.; Burke, J. P.; Carroll, P. J. J. Org.
Chem. 2004, 69, 8062. (b) Imamoto, T.; Oshiki, T.; Onozawa, T.; Kusumoto,
T.; Sato, K. J. Am. Chem. Soc. 1990, 112, 5244. (c) Meijs, G. P.; Eichinger,
P. C. H. Tetrahedron Lett. 1987, 28, 5559.
(6) For biological studies on phosphorous-containing methylenecyclo-
propanes, see: (a) Zhou, S.; Brietenbach, J. M.; Borysko, K. Z.; Drach, J.
C.; Kern, E. R.; Gullen, E.; Cheng, Y.-C.; Zemlicka, J. J. Med. Chem. 2004,
47, 566. (b) Yan, Z.; Zhou, S.; Kern, E. R.; Zemlicka, J. Tetrahedron 2006,
62, 2608. (c) Devreux, V.; Wiesner, J.; Goeman, J. L.; van der Eycken, J.;
Jomaa, H.; van Calenbergh, S. J. Med. Chem. 2006, 49, 2656.
(7) (a) Lemper, A. L.; Tieckelmann, H. Tetrahedron Lett. 1964, 3053.
(b) Lu, X.; Zhu, J. J. Organomet. Chem. 1986, 304, 239. (c) Janecki, T.;
Bodalski, R. Synthesis 1990, 9, 799. (d) Muthiah, C.; Kumar, K. S.; Vittal,
J. J.; Swamy, K. C. K. Synlett 2002, 1787.
(8) (a) Liron, F.; Knochel, P. Chem. Commun. 2004, 304. (b) Demay,
S.; Volant, F.; Knochel, P. Angew. Chem. 2001, 113, 1272; Angew. Chem.,
Int. Ed. 2001, 40, 1235.
Surprisingly, during preparation of phosphinite 11a from
the corresponding cyclopropenylmethanol 12a and chlo-
rodiphenylphosphine, we detected formation of small amounts
of isomeric methylenecyclopropylphosphine oxides 13a and
14a (eq 7). Thus, when the reaction was carried out in the
(9) Typical reaction times for this process are 3-12 h. See ref 8a.
(10) Bach, R. D.; Dmitrienko, O. J. Am. Chem. Soc. 2004, 126, 4444.
(11) B3LYP/6-31G(d): Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D.
K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople,
J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004.
(12) See Supporting Information for details.
presence of triethylamine and DMAP at room temperature,
it initially resulted in the rapid formation of phosphinite 11a.
However, when allowed to react overnight, phosphinite 11a
was slowly transformed into phosphinoxides 13a and 14a
(eq 7). These results clearly indicated the amine plays an
important role in assisting the rearrangement of 11 into 13
and 14 and also demonstrated the viability of the direct one-
5502
Org. Lett., Vol. 9, No. 26, 2007