ORGANIC
LETTERS
2007
Vol. 9, No. 26
5353-5356
Synthesis of Thromboxane B2 via
Ketalization/Ring-Closing Metathesis
Christopher C. Marvin, Alexander J. L. Clemens, and Steven D. Burke*
Department of Chemistry, UniVersity of WisconsinsMadison, 1101 UniVersity AVenue,
Madison, Wisconsin 53706-1322
Received August 28, 2007
ABSTRACT
Total synthesis of thromboxane B2 using intermolecular ketalization followed by ring-closing metathesis is reported. Other key steps include
a Sharpless asymmetric epoxidation to form an oxirane on the endo face of the bicyclic acetal, epoxide opening using lithioacetonitrile, an
allylic alcohol 1,3-transposition, and Mitsunobu lactonization.
A synthetic strategy that has been of recent interest to our
group is that of ketalization/ring-closing metathesis
(K/RCM).1 An advantage of this strategy is the rapid
assembly of rigid bicyclic acetal scaffolds, which can then
be stereoselectively functionalized. In previous applica-
tions of the K/RCM strategy, use of C2-symmetric
diene diols (1 in Figure 1) was predicated upon
identification of an embedded 1,2- or 1,3-diol segment
within the target, where both secondary carbinol centers
had the same configuration. Conversion to ketal 3 renders
the vinyl groups diastereotopic; one becomes involved in
ring formation via RCM,2 and the other remains available
for alternative reaction as in bicyclic acetal 4. The
availability of reliable means for alkene extension via
cross metathesis and methods for stereoselective 1,3-
transposition of allylic alcohols suggested that application
of the K/RCM strategy to targets where the carbinol
centers have vinylogous 1,2- or 1,3-relationships would
be possible. We became interested in the synthesis of
thromboxane B2 [TXB2 (5), Figure 2] as an illustration of
this concept.
TXB2 is the stable hydrolysis product of thromboxane A2
[TXA2 (6), Figure 2], a prostanoid signaling molecule
generated by blood platelets and involved in blood clotting
(1) (a) Burke, S. D.; Mu¨ller, N.; Beaudry, C. M. Org. Lett. 1999, 1,
1827. (b) Burke, S. D.; Voight, E. A. Org. Lett. 2001, 3, 237. (c) Voight,
E. A.; Rein, C.; Burke, S. D. Tetrahedron Lett. 2001, 42, 8747. (d) Keller,
V. A.; Martinelli, J. R.; Strieter, E. R.; Burke, S. D. Org. Lett. 2002, 4,
467. (e) Voight, E. A.; Rein, C.; Burke, S. D. J. Org. Chem. 2002, 67,
8489. (f) Voight, E. A.; Seradj, H.; Roethle, P. A.; Burke, S. D. Org. Lett.
2004, 6, 4045. (g) Marvin, C. C.; Voight, E. A.; Burke, S. D. Org. Lett.
2007, 9, 5357.
(2) For recent reviews, see: (a) Nicolaou, K. C.; Bulger, P. G.; Sarlah,
D. Angew. Chem., Int. Ed. 2005, 44, 4490. (b) Grubbs, R. H. Tetrahedron
2004, 60, 7117. (c) Deiters, A.; Martin, S. F. Chem. ReV. 2004, 104, 2199.
(d) Vernall, A. J.; Abell, A. D. Alrichimica Acta 2003, 36, 93. (e) Connon,
S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900. (f) Trnka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18. (g) Fu¨rstner, A. Angew. Chem.,
Int. Ed. 2000, 39, 3012.
(3) Hamberg, M.; Svensson, J.; Samuelsson, B. Proc. Natl. Acad. Sci.
U.S.A. 1975, 72, 2994.
(4) Reviews: (a) Pelyva´s, I. F.; Thiem, J.; Toth, Z. G. J. Carbohydr.
Chem. 1998, 17, 1. (b) Newton, R. F.; Roberts, S. M. Synthesis 1984, 449.
(c) Nicolaou, K. C.; Gasic, G. P.; Barnette, W. E. Angew. Chem., Int. Ed.
Engl. 1978, 17, 293. Total synthesis: (d) Masaki, Y.; Yoshizawa, K.; Itoh,
A. Tetrahedron Lett. 1996, 37, 9321. (e) Hanessian, S.; Lavallee, P. Can.
J. Chem. 1981, 59, 870. (f) Hanessian, S.; Lavallee, P. Can. J. Chem. 1977,
55, 562. (g) Corey, E. J.; Shibasaki, M.; Knolle, J.; Sugahara, T. Tetrahedron
Lett. 1977, 18, 785. (h) Corey, E. J.; Shibasaki, M.; Knolle, J. Tetrahedron
Lett. 1977, 18, 1625. (i) Nelson, N. A.; Jackson, R. W. Tetrahedron Lett.
1976, 17, 3275. (j) Kelly, R. C.; Schletter, I.; Stein, S. J. Tetrahedron Lett.
1976, 17, 3279. (k) Schneider, W. P.; Morge, R. A. Tetrahedron Lett. 1976,
17, 3286.
10.1021/ol7021214 CCC: $37.00
© 2007 American Chemical Society
Published on Web 11/30/2007