F
H. Kaneko et al.
Letter
Synlett
Y.; Fujii, S.; Tokiwa, H.; Akai, S. J. Org. Chem. 2013, 78, 2965.
(e) Yoshida, H.; Yoshida, R.; Takaki, K. Angew. Chem. Int. Ed.
2013, 52, 8629. (f) Ikawa, T.; Masuda, S.; Takagi, A.; Akai, S.
Chem. Sci. 2016, 7, 5206.
with EtOAc (×3), and the organic phases were combined,
washed with sat. brine, and dried (MgSO4). The solvent was
removed under reduced pressure, and the crude product was
purified by flash column chromatography (silica gel, hexane–
EtOAc).
(5) For selected papers on borylbenzynes, see: (a) Ikawa, T.; Takagi,
A.; Kurita, Y.; Saito, K.; Azechi, K.; Egi, M.; Kakiguchi, K.; Kita, Y.;
Akai, S. Angew. Chem. Int. Ed. 2010, 49, 5563. (b) Takagi, A.;
Ikawa, T.; Saito, K.; Masuda, S.; Ito, T.; Akai, S. Org. Biomol. Chem.
2013, 11, 8145. (c) Yoshida, S.; Shimomori, K.; Nonaka, T.;
Hosoya, T. Chem. Lett. 2015, 44, 1324; see also Ref. 4d.
(6) For selected papers on 3- and 4-(triflyloxy)benzynes, see:
(a) Yoshida, S.; Uchida, K.; Igawa, K.; Tomooka, K.; Hosoya, T.
Chem. Commun. 2014, 50, 15059. (b) Ikawa, T.; Kaneko, H.;
Masuda, S.; Ishitsubo, E.; Tokiwa, H.; Akai, S. Org. Biomol. Chem.
2015, 13, 520. (c) Shi, J.; Qiu, D.; Wang, J.; Xu, H.; Li, Y. J. Am.
Chem. Soc. 2015, 137, 5670. (d) Uchida, K.; Yoshida, S.; Hosoya,
T. Org. Lett. 2017, 19, 1184. (e) Uchida, K.; Yoshida, S.; Hosoya, T.
Synthesis 2016, 48, 4099.
(7) For selected papers on biologically active 1,4-benzodiazepines,
see: (a) Baud, M. G. J.; Lin-Shiao, E.; Zengerle, M.; Tallant, C.;
Ciulli, A. J. Med. Chem. 2016, 59, 1492. (b) Siegrist, R.; Pozzi, D.;
Jacob, G.; Torrisi, C.; Colas, K.; Braibant, B.; Mawet, J.; Pfeifer, T.;
de Kanter, R.; Roch, C.; Kessler, M.; Corminboeuf, O.; Bezençon,
O. J. Med. Chem. 2016, 59, 10661.
(8) For selected recent papers on the synthesis of 1,4-benzodiaze-
pine, see: (a) Li, X.; Yang, L.; Zhang, X.; Zhang-Negrerie, D.; Du,
Y.; Zhao, K. J. Org. Chem. 2014, 79, 955. (b) Fier, P. S.; Whittaker,
A. M. Org. Lett. 2017, 19, 1454.
(13) 1-Methyl-5-oxo-4-tosyl-2,3,4,5-tetrahydro-1H-1,4-benzodi-
azepin-6-yl Triflate (4e; Table 1, Entry 5)
By following the general procedure, a mixture of CsF (46 mg,
0.30 mmol), 1-methyl-3-tosyl-2-imidazolidone (2b; 76 mg,
0.30 mmol), and 2-(tert-butyldimethylsilyl)-1,3-bis(trifluoro-
methanesulfonyloxy)benzene (1a; 50 mg, 0.10 mmol) was
stirred in 1,4-dioxane (1.0 mL) for 40 min at 80 °C. The crude
product was purified by column chromatography [silica gel,
EtOAc–hexane (1:2)] to give a colorless solid; yield: 33 mg
(69%); mp 47–50 °C. IR (neat): 1697 cm–1 1H NMR (400 MHz,
.
CDCl3): δ = 2.44 (s, 3 H), 2.87 (s, 3 H), 3.36 (t, J = 5.5 Hz, 2 H),
4.11 (t, J = 5.5 Hz, 2 H), 6.84 (d, J = 8.0 Hz, 1 H), 6.96 (d, J = 8.0 Hz,
1 H), 7.33 (d, J = 8.5 Hz, 2 H), 7.42 (dd, J = 8.0, 8.0 Hz, 1 H), 7.97
(d, J = 8.5 Hz, 2 H). 13C NMR (100 MHz, CDCl3): δ = 21.7, 40.5,
44.1, 58.6, 115.6, 118.4 (q, J = 319 Hz), 118.6, 122.7, 128.8,
129.3, 133.1, 135.3, 145.1, 147.3, 149.4, 164.3. 19F NMR (376
MHz, CDCl3): δ = –73.0. HRMS (MALDI): m/z [M + Na]+ calcd for
C
18H17F3N2NaO6S2: 501.0372; found: 501.0371.
The regiochemistry of 4e was determined by NOE experiments.
(14) (3aR)-6-Oxo-5-tosyl-2,3,3a,4,5,6-hexahydro-1H-benzo[f]pyr-
rolo[1,2-a][1,4]diazepin-7-yl Triflate [(R)-4o; Table 3,
Entry 1]
By following the general procedure, a mixture of CsF (46 mg,
0.30 mmol), (R)-2-tosylhexahydro-3H-pyrrolo[1,2-c]imidazole-
3-one [(R)-2k] (84 mg, 0.30 mmol), and 2-(tert-butyldimethyl-
silyl)-1,3-bis(trifluoromethanesulfonyloxy)benzene (1a; 50 mg,
0.10 mmol) in 1,4-dioxane (1.0 mL) was stirred for 40 min at
80 °C. The crude product was purified by column chromatogra-
phy [silica gel, EtOAc–hexane (2:3)] to give a yellow solid; yield:
35 mg (70%); mp 141–143 °C; [α]D20 +5.5 (c 0.15, CHCl3). IR
(9) For selected papers on the synthesis of 1,4-benzodiazepine via
benzyne or azabenzyne (heteroarynes), see: (a) Yoshida, H.;
Shirakawa, E.; Honda, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2002,
41, 3247. (b) Goetz, A. E.; Garg, N. K. Nat. Chem. 2013, 5, 54.
(10) Iwasaki, T.; Agura, K.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.;
Mashima, K. Chem. Eur. J. 2010, 16, 11567.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. et al. Gaussian 09,
Revision D.01; Gaussian, Inc: Wallingford, 2009.
(neat): 1699, 1684 cm–1 1H NMR (400 MHz, CDCl3): δ = 1.86–
.
(12) 1,4-Benzodiazepines 4; General Procedure
1.98 (m, 2 H), 2.05–2.16 (m, 2 H), 2.43 (s, 3 H), 3.24–3.35 (m, 2
H), 3.48–3.52 (m, 1 H), 4.07 (dd, J = 4.5, 16.0 Hz, 1 H), 4.24 (dd,
J = 3.0, 16.0 Hz, 1 H), 6.67 (d, J = 8.0 Hz, 1 H), 6.75 (d, J = 8.5 Hz, 1
H), 7.29–7.34 (m, 3 H), 7.95 (d, J = 8.5 Hz, 2 H). 13C NMR (100
MHz, CDCl3): δ = 21.6, 22.1, 29.5, 45.1, 48.9, 65.8, 112.6, 116.0,
117.3, 118.4 (q, J = 319 Hz), 129.1, 129.2, 132.7, 135.2, 145.0,
146.4, 148.6, 164.9. 19F NMR (376 MHz, CDCl3): δ = –73.1. HRMS
(MALDI): m/z [M + Na]+ calcd for C20H19F3N2NaO6S2: 527.0529;
found: 527.0519.
The enantiomeric excess of the product (R)-4o was determined
to be 88% by HPLC on CHIRALCEL AD-3 [hexane–i-PrOH (90:10),
flowrate: 1.0 mL/min]; tR [(R)-isomer] = 30.0 min, tR [(S)-
isomer] = 33.0 min. The absolute configuration was assigned on
the basis of that of (R)-2k, synthesized from D-proline.
CsF (3.0 equiv) was flame-dried under reduced pressure in a
flask equipped with a three-way stopcock, and the flask was
backfilled with argon. Cyclic urea 2 (3.0 equiv) and a magnetic
stirrer bar were loaded into the flask, which was subject to
three cycles of evacuation and backfilling with argon. 1,4-
Dioxane (one-fifth of the total volume of the solvent) was added
to the flask from a syringe. A solution of the appropriate precur-
sor 1a–f (1.0 equiv) in anhyd 1,4-dioxane (one-fifth of total
volume) was added to the flask through a cannula, which was
washed with 1,4-dioxane (three-fifth of total volume). The
mixture was then stirred at 80 °C for 30–60 min until the
benzyne reaction was complete (TLC). The reaction was then
quenched by addition of H2O. The aqueous phase was extracted
© Georg Thieme Verlag Stuttgart · New York — Synlett 2018, 29, A–F