C O M M U N I C A T I O N S
Table 2. Crotylation and Allylation via Iridium-Catalyzed Hydrogen
Supporting Information Available: Experimental procedures and
spectral data for new compounds. This material is available free of
Autotransfer and Transfer Hydrogenationa
References
(1) (a) Guerbet, M. C. R. C. R. Chim. 1908, 146, 298. (b) Machemer, H.
Angew. Chem. 1952, 64, 213. (c) Pratt, E. F.; Kubler, D. G. J. Am. Chem.
Soc. 1954, 76, 52. (d) Ndou, A. S.; Plint, N.; Coville, N. J. Appl. Catal.
A: Gen. 2003, 251, 337.
(2) (a) Gregorio, G.; Pregaglia, G. F.; Ugo, R. J. Organomet. Chem. 1972,
37, 385. (b) Burk, P. L.; Pruett, R. L.; Campo, K. S. J. Mol. Catal. 1985,
33, 1. (c) Cho, C. S.; Kim, B. T.; Kim, H.-S.; Kim, T.-J.; Shim, S. C.
Organometallics 2003, 22, 3608. (d) Carlini, C.; Macinai, A.; Galletti,
A. M. R.; Sbrana, G. J. Mol. Catal. A: Chem. 2004, 212, 65. (e) Fujita,
K.-I.; Asai, C.; Yamaguchi, T.; Hanasaka, F.; Yamaguchi, R. Org. Lett.
2005, 7, 4017. (f) Cho, C. S.; Ren, W. X.; Shim, S. C. Bull. Korean Chem.
Soc. 2005, 26, 1611. (g) Carlini, C.; Marchionna, M.; Noviello, M.;
Galletti, A. M. R.; Sbrana, G.; Basile, F.; Vaccari, A. J. Mol. Catal. A:
Chem. 2005, 232, 13. (h) Matsu-ura, T.; Sakaguchi, S.; Obora, Y.; Ishii,
Y. J. Org. Chem. 2006, 71, 8306. (i) Mart´ınez, R.; Ramo´n, D. J.; Yus,
M. Tetrahedron 2006, 62, 8982.
(3) For a recent review, see: Guillena, G.; Ramo´n, D. J.; Yus, M. Angew.
Chem., Int. Ed. 2007, 46, 2358.
a Cited yields are of isolated material; 1 equiv of alcohol or aldehyde
and 4 equiv of methylallene were used.
(4) (a) Chabardes, P.; Querou, Y. (Rhone-Poulenc SA), FR1582621, 1969;
Chem. Abstr. 1970, 73, 61760. (b) Cho, C. S.; Kim, B. T.; Kim, T.-J.;
Shim, S. C. J. Org. Chem. 2001, 66, 9020. (c) Cho, C. S.; Kim, B. T.;
Lee, M. J.; Kim, T.-J.; Shim, S. C. Angew. Chem., Int. Ed. 2001, 40, 958.
(d) Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. Tetrahedron Lett.
2002, 43, 7987. (e) Mart´ınez, R.; Brand, G. J.; Ramo´n, D. J.; Yus, M.
Tetrahedron Lett. 2005, 46, 3683. (f) Cho, C. S. J. Mol. Catal. A: Chem.
2005, 240, 55. (g) Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.;
Cheeddrala, R. K.; Park, J. Angew. Chem., Int. Ed. 2005, 44, 6913. (h)
Cho, C. S.; Shim, S. C. J. Organomet. Chem. 2006, 691, 4329. (i) Onodera,
G.; Nishibayashi, Y.; Uemura, S. Angew. Chem., Int. Ed. 2006, 45, 3819.
(j) Mart´ınez, R.; Ramo´n, D. J.; Yus, M. Tetrahedron 2006, 62, 8988. (k)
Yamada, Y. M. A.; Uozumi, Y. Org. Lett. 2006, 8, 1375.
Table 3. Isotopic Labeling Studies and Competition Experimentsa
(5) (a) Miyano, S.; Abe, N. J. Org. Chem. 1971, 36, 2948. (b) Grigg, R.;
Mitchell, T. R. B.; Sutthivaiyakit, S.; Tongpenyai, N. Tetrahedron Lett.
1981, 22, 4107. (c) Motokura, K.; Nishimura, D.; Mori, K.; Mizugaki,
T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 5662. (d)
Lo¨fberg, C.; Grigg, R.; Whittaker, M. A.; Keep, A.; Derrick, A. J. Org.
Chem. 2006, 71, 8023. (e) Motokura, K.; Fujita, N.; Mori, K.; Mizugaki,
T.; Ebitani, K.; Jitsukawa, K.; Kaneda, K. Chem. Eur. J. 2006, 12, 8228.
(6) (a) Lo¨fberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharan, V.; Kilner,
C. Chem. Commun. 2006, 5000. (b) Slatford, P. A.; Whittlesey, M. K.;
Williams, J. M. J. Tetrahedron Lett. 2006, 47, 6787.
(7) (a) Edwards, M. G.; Williams, J. M. J. Angew. Chem., Int. Ed. 2002, 41,
4740. (b) Edwards, M. G.; Jazzar, R. F. R.; Paine, B. M.; Shermer, D. J.;
Whittlesey, M. K.; Williams, J. M. J.; Edney, D. D. Chem. Commun.
2004, 90. (c) Black, P. J.; Cami-Kobeci, G.; Edwards, M. G.; Slatford, P.
A.; Whittlesey, M. K.; Williams, J. M. J. Org. Biomol. Chem. 2006, 4,
116. (d) Black, P. J.; Edwards, M. G.; Williams, J. M. J. Eur. J. Org.
Chem. 2006, 4367.
a All reactions were performed under standard conditions cited in Table
1. PNP ) p-nitrophenyl.
(8) For reviews on hydrogenative C-C coupling, see: (a) Ngai, M.-Y.; Kong,
J. R.; Krische, M. J. J. Org. Chem. 2007, 72, 1063. (b) Iida, H.; Krische,
M. J. Top. Curr. Chem. 2007, 279, 77.
standard conditions provides deuterio-2c, which incorporates
deuterium at the benzylic (>95%) and internal vinylic positions
(85%) (Table 3). Coupling of dimethylallene to aldehyde 2b under
standard conditions using d8-isopropanol as terminal reductant
provides deuterio-2c′, which incorporates deuterium primarily at
the internal vinylic position (85%). In this case, deuterium at the
hydroxylic position exchanges out during chromatographic isolation
of the product. Competition experiments involving exposure of
dimethylallene to equimolar quantities of 1a and 2b under standard
conditions provide 2c and 1c in 94% yield in a 1:4 ratio,
respectively. An identical product distribution and yield is observed
upon exposure of dimethylallene to equimolar quantities of 1b and
2a under standard conditions, suggesting rapid redox equilibration
of alcohol and aldehyde partners in advance of C-C coupling.
Indeed, upon exposure of equimolar quantities of 1a and 2b or 1b
and 2a to standard conditions in the absence of allene, an identical
4:1:1:4 mixture of 1a, 1b, 2a, and 2b, respectiVely, is formed.
The ability to achieve carbonyl addition directly from the alcohol
oxidation level circumvents the redox manipulations so often
required to convert alcohols to aldehydes. Further, through hydrogen
autotransfer, there resides the potential to develop myriad byproduct-
free carbonyl additions, wherein alcohols and π-unsaturated
compounds are exploited as coupling partners.
(9) For recent examples, see: (a) CdX vinylation: Kong, J.-R.; Ngai, M.-
Y.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 718. (b) Skucas, E.;
Kong, J.-R.; Krische, M. J. J. Am. Chem. Soc. 2007, 129, 7242. (c)
Barchuk, A.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
8432. (d) Aldol and Mannich addition: Jung, C.-K.; Garner, S. A.; Krische,
M. J. Org. Lett. 2006, 8, 519. (e) Jung, C.-K.; Krische, M. J. J. Am. Chem.
Soc. 2006, 128, 17051. (f) Garner, S. A.; Krische, M. J. J. Org. Chem.
2007, 72, 5843.
(10) Skucas, E.; Bower, J. F.; Krische, M. J. J. Am. Chem. Soc. 2007, 129,
12678.
(11) For reviews on carbonyl allylation, see: (a) Kennedy, J. W. J.; Hall, D.
G. Angew. Chem., Int. Ed. 2003, 42, 4732. (b) Denmark, S. E.; Fu, J.
Chem. ReV. 2003, 103, 2763.
(12) Carbonyl allylation in the absence of preformed allyl metal reagents may
be achieved via ene-type reaction: (a) Mikami, K.; Shimizu, M. Chem.
ReV. 1992, 92, 1021. (b) Berrisford, D. J.; Bolm, C. Angew. Chem., Int.
Ed. 1995, 34, 1717. (c) Johnson, J. S.; Evans, D. A. Acc. Chem. Res.
2000, 33, 325.
(13) Carbonyl allylation via intermolecular allene-carbonyl-arene coupling:
(a) Anwar, U.; Grigg, R.; Rasparini, M.; Savic, V.; Sridharan, V. Chem.
Commun. 2000, 645. (b) Takimoto, M.; Kawamura, M.; Mori, M. Org.
Lett. 2003, 5, 2599. (c) Hopkins, C. D.; Malinakova, H. C. Org. Lett.
2004, 6, 2221. (d) Hopkins, C. D.; Guan, L.; Malinakova, H. C. J. Org.
Chem. 2005, 70, 6848.
(14) Carbonyl allylation via intramolecular allene-carbonyl-arene coupling:
(a) Chevliakov, M. V.; Montgomery, J. J. Am. Chem. Soc. 1999, 121,
11139. (b) Montgomery, J.; Song, M. Org. Lett. 2002, 4, 4009. (c) Kang,
S.-K.; Yoon, S.-K. Chem. Commun. 2002, 2634. (d) Ha, Y.-H.; Kang,
S.-K. Org. Lett. 2002, 4, 1143. (e) Song, M.; Montgomery, J. Tetrahedron
2005, 61, 11440.
Acknowledgment is made to Johnson & Johnson, Merck, the
Welch Foundation, and the NIH-NIGMS (Grant RO1-GM069445)
for partial support of this research.
JA077389B
9
J. AM. CHEM. SOC. VOL. 129, NO. 49, 2007 15135