Angewandte
Chemie
DOI: 10.1002/anie.200703518
Gold Complexes
Transition-Metal Complexes Featuring Z-Type Ligands: Agreement or
Discrepancy between Geometry and dn Configuration?**
Marie Sircoglou, SØbastien Bontemps, Maxime Mercy, Nathalie Saffon, Masashi Takahashi,
Ghenwa Bouhadir, Laurent Maron,*and Didier Bourissou*
The seminal formalism MLlXx (M = transition metal, L = 2e-
donor ligand, X = 1e-donor ligand) provides
a unified
description for transition-metal complexes. Besides the well-
known L- and X-type ligands, the ability of Lewis acids to act
as zero-electron donors/two-electron acceptors was recog-
nized early on,[1] and these ligands were referred to as Z-type
ligands in MLlXxZz complexes. Although such s-acceptor
ligands remain considerably less developed than their s-
donor counterparts, significant advances have been achieved
over the last decade with Group 13 Lewis acids of the type
ER3 (E = B, Al).[2–4] In particular, an increasing number and
variety of transition-metal–borane complexes (M!BR3)
have been unambiguously authenticated.[5] Following the
pioneering contribution of Hill et al.,[6] metallaboratranes A
have become general scaffolds for supporting M!BR3
interactions (M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt;
Scheme 1).[7] The related iridium complex B further expanded
the variety of such interactions to complexes featuring only
two methimazolyl buttresses.[8] In addition, we have demon-
strated that M!B interactions[9] are readily accessible by
coordination of preformed ambiphilic phosphanylborane
ligands.[17–19] The ensuing square-pyramidal complexes C
exemplified the possibility for M!B interactions to exist in
the absence of s-donor ligands in the position trans to the
Lewis acid[17a] and substantiated the marked influence that the
metal (M = Rh, Pt, Pd) may have on such interactions.[17d]
Scheme 1. Structurally characterized complexesfeaturing M !BR3
interactions.
Furthermore, the T-shaped complexes D provided the first
evidence for M!B interactions in 14-electron complexes
supported by a single phosphane buttress.[17b]
The increasing number and variety of complexes featuring
dative M!B bonds have raised fundamental questions as to
the very nature of such interactions. Accordingly, Hill[20a] and
Parkin[20b] proposed two conflicting bonding situations to
describe complexes featuring such Z-type ligands: 1) reten-
tion of the original dn configuration of the metal center and a
coordinated neutral BR3 ligand, and 2) two-electron oxida-
tion of the metal center resulting in a dnꢀ2 configuration and a
dianionic BR32ꢀ ligand (Scheme 2). At first glance, these two
[*] M. Sircoglou, Dr. S. Bontemps, Dr. G. Bouhadir, Dr. D. Bourissou
Laboratoire HØtØrochimie Fondamentale et AppliquØe du CNRS
(UMR 5069), UniversitØ Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex 09 (France)
Fax: (+33)5-6155-8204
E-mail: dbouriss@chimie.ups-tlse.fr
Scheme 2. The two limiting bonding situations for dative M!BR3
M. Mercy, Dr. L. Maron
Laboratoire de Physique et Chimie des Nanoobjets (UMR 5215)
INSA, UniversitØ Paul Sabatier
[20a]
interactionsproposed by Hill
and Parkin,[20b] respectively.
135, avenue de Rangueil, 31077 Toulouse Cedex (France)
Fax: (+33)5-6155-9697
E-mail: laurent.maron@irsamc.ups-tlse.fr
descriptions may be considered as just different representa-
tions of dative M!B bonds, but they in fact reflect two
extreme bonding situations that are intimately related to the
extent of electron-density transfer from the metal atom to the
boron center. In this context, we report herein a combined
experimental and theoretical investigation of [AuCl(diphos-
phanylborane)] complexes featuring short Au–B contacts.
The observed square-planar coordination geometries of the
tetracoordinate gold centers could be considered as indicating
d8 gold(III) configurations, but natural bond orbital (NBO)
analyses and Mössbauer spectroscopic measurements unam-
biguously established that these complexes retain d10 gold(I)
configurations. These results provide the first evidence that
Dr. N. Saffon
Structure FØdØrative Toulousaine en Chimie MolØculaire (FR 2599),
UniversitØ Paul Sabatier
118, route de Narbonne, 31062 Toulouse Cedex 09 (France)
Dr. M. Takahashi
Department of Chemistry, Faculty of Science, Toho University
Miyama, Funabashi, Chiba 274-8510 (Japan)
[**] The CNRS, the UPS, and the ANR are acknowledged for financial
support of this work. We also thank Dr. P. W. Dyer, Dr. K. Miqueu,
and Dr. J. M. Sotiropoulos for helpful discussions.
Supporting information for thisarticle isavailable on the WWW
Angew. Chem. Int. Ed. 2007, 46, 8583 –8586
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
8583
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&
&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
&
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Take advantage of blue reference links
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&