4 For recent reviews, see: (a) P. J. O’Brien, J. Chem. Soc., Perkin Trans. 1,
1998, 1439; (b) P. J. O’Brien, J. Chem. Soc., Perkin Trans. 1, 2001, 95; (c)
S. Jones, J. Chem. Soc., Perkin Trans. 1, 2002, 1; (d) J.-C. Plaquevent,
T. Perrard and D. Cahard, Chem.–Eur. J., 2002, 8, 3300.
5 For recent reviews on organomagnesium chemistry, see: (a)
K. W. Henderson and W. J. Kerr, Chem.–Eur. J., 2001, 7, 3430; (b)
H. Ila, O. Baron, A. J. Wagner and P. Knochel, Chem. Commun., 2006,
583.
6 For examples of such side-reactions with LDA, see: C. Kowalski,
X. Creary, A. J. Rollin and M. C. Burke, J. Org. Chem., 1978, 43, 2601.
7 (a) M. J. Bassindale, J. J. Crawford, K. W. Henderson and W. J. Kerr,
Tetrahedron Lett., 2004, 45, 4175; (b) E. L. Carswell, D. Hayes,
K. W. Henderson, W. J. Kerr and C. J. Russell, Synlett, 2003, 1017; (c)
K. W. Henderson, W. J. Kerr and J. H. Moir, Tetrahedron, 2002, 58,
4573; (d) J. D. Anderson, P. Garc´ıa Garc´ıa, D. Hayes, K. W. Henderson,
W. J. Kerr, J. H. Moir and K. P. Fondekar, Tetrahedron Lett., 2001, 42,
7111; (e) K. W. Henderson, W. J. Kerr and J. H. Moir, Chem.
Commun., 2001, 1722; (f) K. W. Henderson, W. J. Kerr and J. H. Moir,
Synlett, 2001, 1253; (g) K. W. Henderson, W. J. Kerr and J. H. Moir,
Chem. Commun., 2000, 479.
further illustrates the thermal stability and chemoselectivity of the
Mes2Mg reagent, even at such relatively elevated temperatures.
In summary, we have developed a new magnesium-based
carbon-centred base reagent protocol, which offers a number of
distinct advantages over existing and analogous systems. In
particular, the key Mes2Mg reagent is non-nucleophilic and non-
reductive, even at temperatures above ambient. Additionally, only
0.5 mol of the metal-based reagent is required and no appreciable
reaction cooling needs to be applied, with processes being routinely
performed at 0 uC. Furthermore, the system operates effectively
with lowered amounts of electrophile and, perhaps more
importantly, without any amine reagent (cf. the widely employed
LDA). As such, reaction by-products are limited to the innocuous
mesitylene and inorganic salts, thus expediting work-up proce-
dures. Consequently, we believe that the practical benefits offered
by these processes could lead to their widespread adoption by the
preparative community.
8 Mes2Mg (THF solution) is routinely prepared from readily available
MesMgBr and 1,4-dioxane; see supporting data{.
We thank the EPSRC and the Crystal Faraday Partnership for
a Postgraduate Studentship (AJBW), GlaxoSmithKline for further
studentship funding, and the EPSRC Mass Spectrometry Service,
University of Wales, Swansea, and Mr J. Tweedie, University of
Glasgow, for analyses.
9 (a) D. Seebach, M. Ertas¸, R. Locher and W. B. Schweizer, Helv. Chim.
Acta, 1985, 68, 264; (b) M. Ertas¸ and D. Seebach, Helv. Chim. Acta,
1985, 68, 961.
10 E. A. Jeffery and A. Meisters, J. Organomet. Chem., 1974, 82, 307.
11 H. O. House and B. M. Trost, J. Org. Chem., 1965, 30, 1341.
12 H. O. House and V. Kramar, J. Org. Chem., 1963, 28, 3362.
13 Y. Nishimura, Y. Miyake, R. Amemiya and M. Yamaguchi, Org. Lett.,
2006, 8, 5077.
Notes and references
14 For details, see supporting data{.
15 Such internal quench protocols normally require an excess of
electrophile, see: E. J. Corey and A. W. Gross, Tetrahedron Lett.,
1984, 25, 495.
1 (a) C. H. Heathcock, in Comprehensive Carbanion Chemistry, ed.
B. Buncel and T. Durst, Elsevier, New York, 1980, vol. B, ch. 4; (b)
B. J. Wakefield, Organolithium Methods, Academic Press, New York,
1988.
16 It should be noted that mesityllithium has seen rare and atypical usage
for the enolisation of specific ketones, and at much lower temperatures
(e.g. 250 uC), as part of aldol addition chemistry; for example, see:
R. B. Woodward, E. Logusch, K. P. Nambiar, K. Sakan, D. E. Ward,
B.-W. Au-Yeung, P. Balaram, L. J. Browne, P. J. Card, C. H. Chen,
R. B. Cheˆnevert, A. Fliri, K. Frobel, H.-J. Gais, D. G. Garratt,
K. Hayakawa, W. Heggie, D. P. Hesson, D. Hoppe, I. Hoppe,
J. A. Hyatt, D. Ikeda, P. A. Jacobi, K. S. Kim, Y. Kobuke, K. Kojima,
K. Krowicki, V. J. Lee, T. Leutert, S. Machenko, J. Martens,
R. S. Matthews, B. S. Ong, J. B. Press, T. V. Rajan Babu,
G. Rousseau, H. M. Sauter, M. Suzuki, K. Tatsuta, L. M. Tolbert,
E. A. Truesdale, I. Uchida, Y. Ueda, T. Uyehara, A. T. Vasella,
W. C. Vladuchick, P. A. Wade, R. M. Williams and H. N.-C. Wong,
J. Am. Chem. Soc., 1981, 103, 3210.
2 For overviews, see: (a) W. I. I. Bakker, P. L. Wong and V. Snieckus, in
Encyclopedia of Reagents for Organic Synthesis, ed. L. A. Paquette,
Wiley, Chichester, 1995, vol. 5, p. 3096–3104; (b) D. B. Collum,
A. J. McNeil and A. Ramirez, Angew. Chem., Int. Ed., 2007, 46, 3002.
3 For examples of the use of LDA in the synthesis of complex natural
products, see: (a) E. J. Corey and H. E. Ensley, J. Am. Chem. Soc., 1975,
97, 6908; (b) G. Stork and S. Raucher, J. Am. Chem. Soc., 1976, 98,
1583; (c) E. J. Corey, E. J. Trybulski, L. S. Melvin, Jr., K. C. Nicolaou,
J. A. Secrist, R. Lett, P. W. Sheldrake, J. R. Falck, D. J. Brunelle,
M. F. Haslanger, S. Kim and S. Yoo, J. Am. Chem. Soc., 1978, 100,
4618; (d) W. C. Still, J. Am. Chem. Soc., 1979, 101, 2493; (e)
M. C. Pirrung, J. Am. Chem. Soc., 1979, 101, 7130; (f) R. W. Ratcliffe,
T. N. Salzmann and B. G. Christensen, Tetrahedron Lett., 1980, 21, 31;
(g) K. C. Nicolaou, N. A. Petasis, J. Uenishi and R. E. Zipkin, J. Am.
Chem. Soc., 1982, 104, 5557.
17 C. H. Heathcock, S. K. Davidsen, K. T. Hug and L. A. Flippin, J. Org.
Chem., 1986, 51, 3027.
This journal is ß The Royal Society of Chemistry 2007
Chem. Commun., 2007, 5049–5051 | 5051