S. Yu et al. / Tetrahedron Letters 48 (2007) 9112–9115
9115
Schmidt-Mende, L.; Zakeeruddin, S. M.; Gra¨tzel, M.
Appl. Phys. Lett. 2005, 86, 013504.
and only 40% weight loss was detected when the sample
was heated to 800 ꢁC. The thermal stability of trispiro-
fluorene is comparable to those linker-free fluorene
derivatives. Taking 3 as an example, 20,70-diphenyl-
ethynyl-spiro(cyclopropane-1,90-fluorene),10 which had
identical substituents with 3, the decomposition temper-
ature was detected to be 302 ꢁC.
3. (a) Johansson, N.; Salbeck, J.; Bauer, J.; Weisso¨rtel, F.;
Bro¨ms, P.; Andersson, A.; Salaneck, W. R. Adv. Mater.
1998, 10, 1136; (b) Schneider, D.; Rabe, T.; Riedl, T.;
Dobbertin, T.; Kro¨ger, M.; Becker, E.; Johannes, H.-H.;
Kowalsky, W.; Weimann, T.; Wang, J.; Hinze, P.;
Gerhard, A.; Stossel, P.; Vestweber, H. Adv. Mater.
2005, 17, 31.
In conclusion, we have described a facile and efficient
route to highly fluorescent trispirobifluorenes (1–8).
Compounds 2–8 exhibited bright violet to blue emission
with excellent quantum efficiencies in cyclohexane solu-
tions. Compounds 3–8 showed relative optical stabilities
and high thermal stabilities. These properties implied
that these compounds might be used as optoelectronic
materials in the future. Further studies on them as mate-
rials in OLEDs are in progress.
4. Saragi, T. P. I.; Pudzich, R.; Fuhrmann, T.; Salbeck, J.
Appl. Phys. Lett. 2004, 84, 2334.
5. (a) Kim, S. Y.; Lee, M.; Boo, B. H. J. Chem. Phys. 1998,
109, 2593; (b) Fu, W.; Feng, J.-K.; Pan, G.-B. J. Mol.
Struct. (Theochem) 2001, 545, 157.
6. (a) Tian, H.; Chen, B.; Liu, P.-H. Chem. Lett. 2001, 990;
(b) Chun, C.; Kim, M.-J.; Vak, D.; Kim, D. Y. J. Mater.
Chem. 2003, 13, 2904.
7. (a) Cheng, X.; Zhang, Q.; Xie, J.-H.; Wang, L.-X.; Zhou,
Q.-L. Angew. Chem., Int. Ed. 2005, 44, 1118; (b) Ferrand,
Y.; Poriel, C.; Maux, P. L.; Rault-Berthelot, J.; Simonne-
aux, G. Tetrahedron: Asymmetry 2005, 16, 1463.
8. Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater.
2000, 12, 828.
Acknowledgments
9. Salbeck, J.; Weissortel, F.; Bauer, J. Macromol. Symp.
1997, 125, 121.
10. Wang, Z.-X.; Shao, H.-X.; Ye, J.-C.; Zhang, L.; Lu, P.
Adv. Funct. Mater. 2007, 17, 253.
Ping Lu thanks National Nature Science Foundation of
China (20674070) and the Nature Science Foundation of
Zhejiang Province (R404109).
11. Wu, R.; Schumn, J. S.; Pearson, D. L.; Tour, J. M. J. Org.
Chem. 1996, 61, 6906.
12. (a) Pei, J.; Ni, J.; Zhou, X.-H.; Cao, X.-Y.; Lai, Y.-H. J.
Org. Chem. 2002, 67, 4924; (b) Wu, F.-I.; Dodda, R.;
Reddy, D. S.; Shu, C.-F. J. Mater. Chem. 2002, 12, 2893.
13. Chiang, C.-L.; Shu, C.-F.; Chin, C.-T. Org. Lett. 2005, 7,
3717.
Supplementary data
Supplementary data associated with this article can be
´
14. (a) Moll, O. P. Y.; Borgne, T. L.; Thuery, P.; Ephritikhine,
M. Tetrahedron Lett. 2001, 42, 3855; (b) Fukuda, M.;
Genda, K. Jpn. Kokai Tokkyo Koho 2004, 577 pp; (c)
Yamada, T.; Kita, H. Jpn. Kokai Tokkyo Koho 2004, 37
pp.
References and notes
15. (a) Kelley, C. J.; Ghiorghis, A.; Kauffman, J. M. J. Chem.
Res. (S) 1997, 12, 446; (b) Chow, H.-F.; Wan, C.-W.;
Low, K.-H.; Yeung, Y.-Y. J. Org. Chem. 2001, 66, 1910.
16. (a) Gibson, V. C.; Spitzmesser, S. K.; White, A. J. P.;
Williams, D. J. J. Chem. Soc., Dalton Trans. 2003, 2718;
(b) Hameurlaine, A.; Dehaen, W. Tetrahedron Lett. 2003,
44, 957; (c) Park, J. H.; Kim, K.; Hong, Y.-R.; Jin, J.-I.;
Sohn, B.-H. Macromol. Symp. 2004, 212, 51.
1. (a) Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.;
¨
Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.;
Becker, H.; Meerholz, K. Nature 2003, 421, 829; (b) Chao,
T.-C.; Lin, Y.-T.; Yang, C.-Y.; Hung, T. S.; Chou, H.-C.;
Wu, C.-C.; Wong, K.-T. Adv. Mater. 2005, 17, 992; (c) He,
G.; Pfeiffer, M.; Leo, K.; Hofmann, M.; Birnstock, J.;
Pudzich, R.; Salbeck, J. Appl. Phys. Lett. 2004, 85, 3911;
(d) Chuen, C. H.; Tao, Y. T.; Wu, F. I.; Shu, C. F. Appl.
Phys. Lett. 2004, 85, 4609; (e) Suh, M. C.; Chin, B. D.;
Kim, M.-H.; Kang, T. M.; Lee, S. T. Adv. Mater. 2003, 15,
1254; (f) Kim, Y.-H.; Shin, D.-C.; Kim, S.-H.; Ko, C.-H.;
Yu, H.-S.; Chae, Y.-S.; Kwon, S.-K. Adv. Mater. 2001, 13,
1690; (g) Steuber, F.; Staudigel, J.; Sto¨ssel, M.; Simmerer,
J.; Winnacker, A.; Spreitzer, H.; Weisso¨rtel, F.; Salbeck, J.
Adv. Mater. 2000, 12, 130.
17. (a) Tirapattur, S.; Belleteˆte, M.; Drolet, N.; Bouchard, J.;
Ranger, M.; Leclere, M.; Durocher, G. J. Phys. Chem. B
2002, 106, 8959; (b) Destri, S.; Pasini, M.; Botta, C.;
`
Porzio, W.; Bertini, F.; Marchio, L. J. Mater. Chem. 2002,
12, 924; (c) Tirapattur, S.; Belleteˆte, M.; Leclere, M.;
Durocher, G. J. Mol. Struct. (Theochem) 2003, 625, 141.
18. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.;
Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73,
2453.
19. Zhang, X.-W.; Gao, J.; Yang, C.-L.; Zhu, L.-N.; Li, Z.-G.;
Zhang, K.; Qin, J.-G.; You, H.; Ma, D.-G. J. Organomet.
Chem. 2006, 691, 4312.
2. (a) Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.;
Weisso¨rtel, F.; Salbeck, J.; Spreitzer, H.; Gra¨tzel, M.
Nature 1998, 395, 583; (b) Schmidt-Mende, L.; Bach, U.;
Humphry-Baker, R.; Horiuchi, T.; Miura, H.; Ito, S.;
Uchida, S.; Gra¨tzel, M. Adv. Mater. 2005, 17, 813; (c)