C O M M U N I C A T I O N S
various surface characterization studies are ongoing to gain ad-
ditional insights on structure, the here reported studies provide the
ultimately relevant functional evidence and promise attractive
perspectives. Preliminary results on increasing zipper complexity
with differently colored NDIs to address more challenging functions
are very promising.
Acknowledgment. We thank S. Bhosale and D.-H. Tran for
contributions to synthesis; D. Jeannerat, A. Pinto, and S. Grass for
NMR measurements; P. Perrottet and the group of F. Gu¨lac¸ar for
ESI MS; N. Oudry and G. Hopfgartner for MALDI MS; H.-R.
Hagemann for access to a Xe lamp; F. Wu¨rthner, S. Fukuzumi, A.
Ikeda, S. Kimura, and Y. Kobuke for advise; and the Swiss NSF
and JSPS for financial support.
Figure 3. Zipper assembly on gold electrodes. (A) Change in photocurrent
during assembly of a blue zipper (sequence Au-1-2-3-2-3-2-3-2, solid) and
a capped control zipper (Au-1-2-1 + 2 + 3 + 2 + 3 + 2, dotted) on gold
electrodes (Conditions: 2, 3 (∼10 µM) in TFE/H2O (0.5 mM NanH3-nPO4,
0.5 M NaCl, pH 7) 1:1, room temp, 14 h; rinsed with H2O and EtOH). (B)
Dependence of photocurrent on number of oligo-NDI layers of the blue
zipper (b) compared to blue LBLs (Au-1-pK-3-pK-3-pK-3-pK-3-pK-3, pK
) polylysine, +) and the capped Au-1-2-1 + 2 + 3 + 2 + 3 + 2 (O).10
Supporting Information Available: Experimental details. This
References
(1) (a) Balzani, V.; Venturi, M.; Credi, A. Molecular DeVices and Machines,
Wiley-VCH: Weinheim, Germany, 2003. (b) Murphy, A. R.; Fre´chet, J.
M. J. Chem. ReV. 2007, 107, 1066-1096. (c) Yamamoto, Y.; Fukushima,
T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.;
Kawai, T.; Aida, T. Science 2006, 314, 1761-1764. (d) Wu¨rthner, F.;
Chen, Z.; Hoeben, F. J. M.; Osswald, P.; You, C.-C.; Jonkheijm, P.;
Herrikhuyzen, J.; Schenning, A. P. H. J.; van der Schoot, P. P. A. M.;
Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J. J.
Am. Chem. Soc. 2004, 126, 10611-10618. (e) Kang, S.; Umeyama, T.;
Ueda, M.; Matano, Y.; Hotta, H.; Yoshida, K.; Isoda, S.; Shiro, M.;
Imahori, H. AdV. Mater. 2006, 18, 2549-2552. (f) Fukuzumi, S. Bull.
Chem. Soc. Jpn. 2006, 79, 177-195. (g) Jones, B. A.; Facchetti, A.; Marks,
T. J.; Wasielewski, M. R. Chem. Mater. 2007, 19, 2703-2705. (h)
Morisue, M.; Yamatsu, S.; Haruta, N.; Kobuke, Y. Chem. Eur. J. 2005,
11, 5563-5574. (i) Chaignon, F.; Falkenstrom, M.; Karlsson, S.; Blart,
E.; Odobel, F.; Hammarstrom, L. Chem. Commun. 2007, 42, 64-66.
(2) (a) Decher, G. Science 1997, 277, 1232-1237. (b) Mwaura, J. K.; Pinto,
M. R.; Witker, D.; Ananthakrishnan, N.; Schanze, K. S.; Reynolds, J. R.
Langmuir 2005, 21, 10119-10126. (c) Fushimi, T.; Oda, A.; Ohkita, H.;
Ito, S. Langmuir 2005, 21, 1584-1589. (d) Lahav, M.; Heleg-Shabtai,
V.; Wasserman, J.; Katz, E.; Willner, I.; Du¨rr, H.; Hu, Y.-Z.; Bossmann,
S. H. J. Am. Chem. Soc. 2000, 122, 11480-11487. (e) Ikeda, A.; Hatano,
T.; Shinkai, S.; Akiyama, T.; Yamada, S. J. Am. Chem. Soc. 2001, 123,
4855-4856. (f) Abdelrazzaq, F. B.; Kwong, R. C.; Thompson, M. E. J.
Am. Chem. Soc. 2002, 124, 4796-4803.
dependence in propagation and termination steps confirmed that
indeed zipper assembly as depicted in Figure 1 is operational and
not the conventional layer-by-layer (LBL) assembly.2
Zipper assembly on gold electrodes was explored next. Deposi-
tion of initiator 1 on the electrode surface caused complete inhibition
of electrochemical ferricyanide reduction (Figure S5). This result
indicated the absence of large uncoated areas that would allow the
approach of ferricyanide to the gold electrode despite charge
repulsion from 1. Zipper assembly from Au-1 by repeated dipping
into first cationic and then anionic propagators 2 and 3, respectively,
gave rise to increasing photocurrents as expected from the increased
absorption of light (Figure 3A, solid, B, b). With triethanolamine
(TEOA) as sacrificial electron donor, the gold electrode served as
electron acceptor and the Pt electrode as cathode.
As on gold nanoparticles, terminator 1 could effectively stop
the growth of zipper assembly on gold electrodes. After capping
of Au-1-2 electrodes with terminator 1, repeated addition of
propagators 2 and 3 did not cause any significant increase in
photocurrent (Figure 3A, dotted, B, O). The consistent results
obtained using different surfaces and methods corroborated the
existence of operational sticky ends.12
As a second control experiment, conventional, purely electrostatic
LBL assemblies were prepared by replacing the cationic NDI
p-octiphenyls 2 by poly-L-lysine (pK). Nearly negligible photo-
currents were obtained (Figure 3B+). This result suggested that
electron transfer through less ordered LBL layers is inefficient and
thus supported the functional importance of the refined architectures
in zipper assembly (Figure 3B, b vs +).
In conclusion, we have presented evidence for the existence and
functional significance of zipper assembly. Steady zipper growth
with mismatched rods and the absence of zipper growth with
matched rods were both demonstrated on gold nanoparticles and
gold electrodes by three independent methods (i.e., photocurrent
generation, NDI absorption, and shift of the SPR band).12 The
shown feasibility to terminate the zipper assembly and the much
weaker photocurrent observed with conventional LBL controls are
in support of the ordered structure in zipper assembly. Although
(3) Bhosale, S.; Sisson, A. L.; Talukdar, P.; Fu¨rstenberg, A.; Banerji, N.;
Vauthey, E.; Bollot, G.; Mareda, J.; Ro¨ger, C.; Wu¨rthner, F.; Sakai, N.;
Matile, S. Science 2006, 313, 84-86.
(4) Das, G.; Matile, S. Chirality 2001, 13, 170-176.
(5) Hunter, C. A.; Tomas, S. J. Am. Chem. Soc. 2006, 128, 8975-8979.
(6) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303-305. (b) Gorteau,
V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. J. Am. Chem.
Soc. 2006, 128, 14788-14789.
(7) (a) Miller, L. L.; Mann, K. R. Acc. Chem. Res. 1996, 29, 417-423. (b)
Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.;
Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478-481. (c) Langford,
S. J.; Latter, M. J.; Woodward, C. J. Photochem. Photobiol. 2006, 82,
1530-1540. (d) Pantos, G. D.; Wietor, J. L.; Sanders, J. K. Angew. Chem.,
Int. Ed. 2007, 46, 2238-2240.
(8) Khanna, R. K.; Jiang, Y. M.; Creed, D. J. Am. Chem. Soc. 1991, 113,
5451-5453.
(9) (a) Thalacker, C.; Ro¨ger, C.; Wu¨rthner, F. J. Org. Chem. 2006, 71, 8098-
8105. (b) Blaszczyk, A.; Fischer, M.; von Ha¨nisch, C.; Mayor, M. HelV.
Chim. Acta 2006, 89, 1986-2005.
(10) See Supporting Information.
(11) (a) Liu, G. L.; Yin, Y.; Kunchakarra, S.; Mukherjee, B.; Gerion, D.; Jett,
S. D.; Bear, D. G.; Gray, J. W.; Alvisatos, A. P.; Lee, L. P.; Chen, F. F.
Nat. Nanotechnol. 2006, 1, 47-52. (b) Haes, A. J.; Zou, S.; Schatz, G.
C.; Van Duyne, R. P. J. Phys. Chem. B 2004, 108, 109-116.
(12) Preliminary results with quartz crystal microbalance reproduced the steady
zipper growth found by photocurrent generation, NDI absorption, and shift
of the SPR band.
JA077099V
9
J. AM. CHEM. SOC. VOL. 129, NO. 51, 2007 15759