10.1002/chem.201805295
Chemistry - A European Journal
COMMUNICATION
11040; p) W. Guo, L. Martinez-Rodriguez, R. Kuniyil, E. Martin, E. C.
Escudero-Adan, F. Maseras, A. W. Kleij, J. Am. Chem. Soc. 2016, 138,
11970-11978; q) J. E. Gomez, W. Guo, A. W. Kleij, Org. Lett. 2016, 18,
6042-6045; r) A. Cai, W. Guo, L. Martinez-Rodriguez, A. W. Kleij, J. Am.
Chem. Soc. 2016, 138, 14194-14197; s) L. Yang, A. Khan, R. Zheng, L.
Y. Jin, Y. J. Zhang, Org. Lett. 2015, 17, 6230-6233; t) A. Khan, J. Xing,
J. Zhao, Y. Kan, W. Zhang, Y. J. Zhang, Chem. Eur. J. 2015, 21, 120-
124; u) A. Khan, R. Zheng, Y. Kan, J. Ye, J. Xing, Y. J. Zhang, Angew.
Chem. Int. Ed. 2014, 53, 6439-6442; (v) A. Cristòfol, E. C. Escudero-
Adán, A. W. Kleij, J. Org. Chem. 2018, 83, 9978-9990; For a recent
review on the use of VECs: w) W. Guo, J. E. Gomez, A. Cristofol, J. Xie,
A. W. Kleij, Angew. Chem. Int. Ed. 2018, 57, 13735-13747
In summary, we have developed the first example of a
chemo-switchable allylic CN or CS bond formation reaction
through an endogenous ligand-controlled, Pd-catalyzed
conversion of versatile vinylethylene carbonate and N-
sulfonylhydrazone substrates. This developed protocol exhibits
broad substrate scope and excellent functional group tolerance
important for diversity-orientated synthesis and drug discovery.
The catalytic methodology can also be applied to late-stage
functionalization of bioactive scaffolds by introduction of various
allylic fragments. Further diversity-oriented transition metal
mediated transformations are currently targeted to further
expand this conceptual approach.
[4]
[5]
[6]
a) N. A. Butt, W. Zhang, Chem. Soc. Rev. 2015, 44, 7929-7967; b) B. M.
Trost, T. Zhang, J. D. Sieber, Chem. Sci. 2010, 1, 427-440.
a) Z. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560-572; b) Q. Xiao,
Y. Zhang, J. Wang, Acc. Chem. Res. 2013, 46, 236-247.
a) Y. Xia, J. Wang, Chem. Soc. Rev. 2017, 46, 2306-2362; b) Q. Sun, L.
Li, L. Liu, Q. Guan, Y. Yang, Z. Zha, Z. Wang, Org Lett. 2018, 20, 5592-
5596; c) X. W. Feng, J. Wang, J. Zhang, J. Yang, N. Wang, X. Q. Yu,
Org Lett. 2010, 12, 4408-4411; d) S. Mao, Y. R. Gao, X. Q. Zhu, D. D.
Guo, Y. Q. Wang, Org Lett. 2015, 17, 1692-1695.
Acknowledgements
We gratefully acknowledge 100 talent program of Chinese
Academy of Sciences, Chinese NSF (21702217), "1000-Youth
Talents Plan", Shanghai-Youth Talent, Shanghai-Technology
innovation Action Plan (18JC1415300), the CERCA
Program/Generalitat de Catalunya, ICREA, the Spanish
MINECO (CTQ2017-88920-P), and AGAUR (2017-SGR-232) for
support of this research.
[7]
[8]
A. Lumbroso, M. L. Cooke, B. Breit, Angew. Chem. Int. Ed. 2013, 52,
1890-1932.
a) F. Reck, F. Zhou, M. Girardot, G. Kern, C. J. Eyermann, N. J. Hales,
R. R. Ramsay, M. B. Gravestock, J. Med. Chem. 2005, 48, 499-506; b)
B. Lim, E.-T. Oh, J. Im, K. S. Lee, H. Jung, M. Kim, D. Kim, J. T. Oh, S.-
H. Bae, W.-J. Chung, K.-H. Ahn, S. Koo, Eur. J. Org. Chem. 2017,
2017, 6390-6400.
Keywords: allylic substitution • decarboxylation • N-
[9]
For comparison, we also probed the reaction towards the formation of
product 3ad (yield: 62%, Z/E = 93:7; Scheme 2) using sodium p-
tolylsulfinate as a nucleophile. In the latter case, the yield for 3ad (74%)
was improved but at the expense of the stereoselectivity (Z/E = 86:14).
sulfonylhydrazones • Pd catalysis • vinylethylene carbonates
[1]
a) E. Lenci, A. Guarna, A. Trabocchi, Molecules 2014, 19, 16506-
16528; b) W. R. Galloway, A. Isidro-Llobet, D. R. Spring, Nat. Commun.
2010, 1, 80; c) S. L. Schreiber, Science 2000, 287, 1964-1969.
[10] See Supporting Information for details, and CCDC-1869422 and
1869425.
[11] A. Kumar, A. Voet, K. Y. J. Zhang, Curr. Med. Chem. 2012, 19, 5128-
5147.
[2]
[3]
Y. C. Lee, K. Kumar, H. Waldmann, Angew. Chem. Int. Ed. 2018, 57,
5212-5226.
[12] a) Y. Wang, G. Schmid-Bindert, C. Zhou, Ther. Adv. Med. Oncol. 2012,
4, 19-29; b) J. Tang, R. Salama, S. M. Gadgeel, F. H. Sarkar, A.
Ahmad, Front .Pharmacol. 2013, 4, 15.
a) C. Yuan, Y. Wu, D. Wang, Z. Zhang, C. Wang, L. Zhou, C. Zhang, B.
Song, H. Guo, Adv. Synth. Catal. 2018, 360, 652-658; b) L. C. Yang, Z.
Y. Tan, Z. Q. Rong, R. Liu, Y. N. Wang, Y. Zhao, Angew. Chem. Int. Ed.
2018, 57, 7860-7864; c) Y. N. Wang, L. C. Yang, Z. Q. Rong, T. L. Liu,
R. Liu, Y. Zhao, Angew. Chem. Int. Ed. 2018, 57, 1596-1600; d) S.
Singha, T. Patra, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2018,
140, 3551-3554; e) I. Khan, C. Zhao, Y. J. Zhang, Chem. Commun.
2018, 54, 4708-4711; f) W. Guo, R. Kuniyil, J. E. Gomez, F. Maseras, A.
W. Kleij, J. Am. Chem. Soc. 2018, 140, 3981-3987; g) P. Das, S.
Gondo, P. Nagender, H. Uno, E. Tokunaga, N. Shibata, Chem. Sci.
2018, 9, 3276-3281; h) L. C. Yang, Z. Q. Rong, Y. N. Wang, Z. Y. Tan,
M. Wang, Y. Zhao, Angew. Chem. Int. Ed. 2017, 56, 2927-2931; i) J.
Xie, W. Guo, A. Cai, E. C. Escudero-Adan, A. W. Kleij, Org. Lett. 2017,
19, 6388-6391; j) H. Wang, F. Pesciaioli, J. C. A. Oliveira, S. Warratz, L.
Ackermann, Angew. Chem. Int. Ed. 2017, 56, 15063-15067; k) Z. Q.
Rong, L. C. Yang, S. Liu, Z. Yu, Y. N. Wang, Z. Y. Tan, R. Z. Huang, Y.
Lan, Y. Zhao, J. Am. Chem. Soc. 2017, 139, 15304-15307; l) N.
Miralles, J. E. Gomez, A. W. Kleij, E. Fernandez, Org. Lett. 2017, 19,
6096-6099; m) A. Khan, S. Khan, I. Khan, C. Zhao, Y. Mao, Y. Chen, Y.
J. Zhang, J. Am. Chem. Soc. 2017, 139, 10733-10741; n) Y. Mao, X.
Zhai, A. Khan, J. Cheng, X. Wu, Y. J. Zhang, Tetrahedron Lett. 2016,
57, 3268-3271; o) W. Guo, L. Martinez-Rodriguez, E. Martin, E. C.
Escudero-Adan, A. W. Kleij, Angew. Chem. Int. Ed. 2016, 55, 11037-
[13] a) S. Veiga, L. M. Garcia-Segura, I. Azcoitia, J. Neurobiol. 2003, 56,
398-406; b) K. K. Borowicz, B. Piskorska, M. Banach, S. J. Czuczwar,
Front. Endocrinol. 2011, 2, 50.
[14] a) K. K. Koh, S. H. Han, M. J. Quon, J. Yeal Ahn, E. K. Shin, Diabetes
Care 2005, 28, 1419-1424; b) A. Keech, R. J. Simes, P. Barter, J. Best,
R. Scott, M. R. Taskinen, P. Forder, A. Pillai, T. Davis, P. Glasziou, P.
Drury, Y. A. Kesaniemi, D. Sullivan, D. Hunt, P. Colman, M. d'Emden,
M. Whiting, C. Ehnholm, M. Laakso, Lancet 2005, 366, 1849-1861.
[15] C. Wang, R. S. Swerdloff, A. Iranmanesh, A. Dobs, P. J. Snyder, G.
Cunningham, A. M. Matsumoto, T. Weber, N. Berman, J. Clin.
Endocrinol. Metab. 2000, 85, 2839-2853.
[16] A. Kondoh, S. Akahira, M. Oishi, M. Terada, Angew. Chem. Int. Ed.
2018, 57, 6299-6303.
[17] 2-Acetylpyridine addition (5 mol%) during the catalytic reaction leads to
product 3aa (68%, Z/E = 91:9). The result is similar compared with the
optimized protocol provided in Table 1, entry 10 (yield of 3aa: 71%, Z/E
=
94:6). This may further indicate the existence of an allyl-Pd
intermediate as suggested in Scheme 6.
This article is protected by copyright. All rights reserved.