COMMUNICATIONS
Acknowledgements
The authors thank SERB (DST), New Delhi, for financially
supporting us with GPP-0303 (File no. YSS/2014/001018)
project. We are grateful to the Director, CSIR–NEIST for his
keen interest.
References
[1] a) L. J. Goossen, N. Rodriguez, K. Goossen, Angew.
Chem. 2008, 120, 3111; Angew. Chem. Int. Ed. 2008, 47,
3100; b) O. Baudoin, Angew. Chem. 2007, 119, 1395;
Angew. Chem. Int. Ed. 2007, 46, 1373; c) N. Rodrꢁguez,
L. J. Goossen, Chem. Soc. Rev. 2011, 40, 5030.
[2] For decarboxylative C–N coupling reactions, see a) Y.
Zhang, S. Patel, N. Mainolfi, Chem. Sci. 2012, 3, 3196;
b) W. Jia, N. Jiao, Org. Lett. 2010, 12, 2000; c) C.-C.
Cho, J.-N. Liu, C.-H. Chien, J.-J. Shie, Y.-C. Chen, J.-M.
Fang, J. Org. Chem. 2009, 74, 1549.
Scheme 4. Plausible reaction mechanism.
[3] For selected references of use of a-oxocarboxylic acids,
see, a) G.-Z. Wang, R. Shang, W.-M. Cheng, Y. Fu, Org.
Lett. 2015, 17, 4830; b) H. Wang, L.-N. Guo, S. Wang,
X.-H. Duan, Org. Lett. 2015, 17, 3054; c) Ref.[1a]; d) Z.
Yang, X. Chen, J. Liu, Q. Gui, K. Xie, M. Li, Z. Tan,
Chem. Commun. 2013, 49, 1560.
lyzed reactions (entries 6–7, Table 1), initially, air oxi-
dation of Cu(I) to Cu(II) occurs, which catalyzes the
decarboxylation of the a-oxocarboxylic acid (2a) to
generate benzoyl Cu(II) species (4a).[6d]
[4] a) R. Prakash, K. Shekarrao, S. Gogoi, Org. Lett. 2015,
17, 5264; b) K. Shekarrao, P. P. Kaishap, S. Gogoi, R. C.
Boruah, Adv. Synth. Catal. 2015, 357, 1187; c) R. Pra-
kash, K. Shekarrao, S. Gogoi, R. C. Boruah, Chem.
Commun. 2015, 51, 9972.
In summary, we have described the first metal-cata-
lyzed decarboxylative cross-coupling reaction of aryl-
glyoxylic acids with N-nucleophiles isatins for the for-
mation of C–N bonds. This unprecedented Cu(II)-cat-
alyzed reaction which proceeds through decarboxyla-
tion, decarbonylation, C–N and C–O bond formation
affords a wide range of pharmaceutically important
4H-benzo[d][1,3]oxazin-4-ones efficiently in good
yields.
[5] For the importance and synthesis of 4H-benzo[d]
[1,3]oxazin-4-ones, see, a) R. Padwal, Curr. Opin. Invest.
Drugs 2008, 9, 414; b) G. Grover, S. G. Kini, Eur. J.
Med. Chem. 2006, 41, 256; c) G. Fenton, C. G. Newton,
B. M. Wyman, P. Bagge, D. I. Dron, D. Riddell, G. D.
Jones, J. Med. Chem. 1989, 32, 265; d) R. Giri, J. K.
Lam, J.-Q. Yu, J. Am. Chem. Soc. 2010, 132, 686;
e) C. E. Houlden, M. Hutchby, C. D. Bailey, J. G. Ford,
S. N. G. Tyler, M. R. Gagne, G. C. Lloyd-Jones, K. I.
Booker-Milburn, Angew. Chem. 2009, 121, 1862; Angew.
Chem. Int. Ed. 2009, 48, 1830; f) C. Larksarp, H. Alper,
Org. Lett. 1999, 1, 1619; g) Z. Zheng, H. Alper, Org.
Lett. 2008, 10, 829; h) X.-F. Wu, J. Schranck, H. Neu-
mann, M. Beller, Chem. Eur. J. 2011, 17, 12246; i) X.-F.
Wu, H. Neumann, M. Beller, Chem. Eur. J. 2012, 18,
12599; j) S. V. F. Hansen, T. Ulven, Org. Lett. 2015, 17,
2832.
Experimental Section
Typical Experimental Procedure
A solution of isatin 1 (1.0 mmol), a-oxocarboxylic acid 2
(1.0 mmol) and copper acetate (30 mol%) in tert-amyl alco-
hol (4.0 mL) was heated at 958C under air for 24 hours.
After completion of the reaction, the solvent was removed
under vacuum. The crude product obtained was purified by
column chromatography over silica gel (100–200 mesh)
using EtOAc/hexane (1:9) as the eluant to afford the 4H-
benzo[d][1,3]oxazin-4-one.
[6] a) L. Yu, P. Li, L. Wang, Chem. Commun. 2013, 49,
2368; b) X. Li, F. Yang, Y. Wu, Y. Wu, Org. Lett. 2014,
16, 992; c) T. Inami, T. Kurahashi, S. Matsubara, Org.
Lett. 2014, 16, 5660; d) S.-Y. Moon, J. Nam, K. Rathwell,
W.-S. Kim, Org. Lett. 2014, 16, 338.
Adv. Synth. Catal. 0000, 000, 0 – 0
4
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!