Synthesis and Physical Properties of Dialkoxy Disulfides
SCHEME 1. Representation of the Original
Concerted Mechanism
SCHEME 2
mides,36,40,41 sulfenamides,42 acrylonitriles (DMAAN),43
and carbamates44,45 are due in part to resonance-induced
double-bond character in these systems.46 In biphe-
nyls47,48 and related compounds,49-52 however, they are
due to steric interactions about either an sp2-sp2 or an
sp2-sp3 carbon-carbon bond.53,54
TABLE 1. S-S Torsional Barrier of Some Related
Polychalcogens
compd
barriera
ref
Herein, we report a generalized method for the syn-
thesis of dialkoxy disulfides. We examine the diastero-
topic coalescence phenomenon as a function of the
substituent as well as the solvent. We also investigate
the nature of the thermal decomposition pathway. We
used the relatively stable bis(p-nitrobenzyloxy) disulfide
1a as a representative dialkoxy disulfide in most of these
studies.
MeS-SMe
6.8
14.5
18.4
55
56
10
MeOS-SN(Me)2
EtOS-SOEt
a In kcal/mol.
Most intriguingly, Thompson2 observed that upon
heating, 1 decomposed to afford the corresponding alde-
hyde, alcohol, and elemental sulfur. He hypothesized a
six-membered cyclic transition state, similar to that
shown in Scheme 1, to account for product formation,
though to our knowledge there is no experimental
evidence to support this mechanistic conclusion. We have
shown that diatomic sulfur can indeed be trapped by
dienes in good yield (61-79%) in what was similarly
suggested to be a thermal pseudopericyclic reaction; in
the absence of a diene trap, S2 condenses to the more
stable S8 allotrope.9
One of the defining and highly unusual properties of
1 is the exceptionally short S-S bond (ca. 1.91 Å)16,18,24
suggestive of a S-S rotational barrier that is much
higher (ca. 18 kcal/mol)4,10 than that of a normal disulfide
(ca. 7 kcal/mol). Restricted rotation in 1 appears to arise
entirely from electronic modulation of the S-S σ-bond.
Indeed, the degree of this electronic effect manifests itself
through electron-withdrawing elements immediately ad-
jacent to the S-S bond (Table 1). Restricted rotation
about single bonds25 is not usually influenced solely
through stereoelectronic interactions. For instance, well-
documented high torsional barriers in amides,26-39 thioa-
Results and Discussion
Synthesis. As part of our wider interests in the
physical properties of dialkoxy disulfides, we synthesized
and characterized several dialkoxy disulfides (derived
from the corresponding alcohols 3) according to a modi-
fication of the procedure used by Thompson2 (Scheme 2,
Table 2). Dilute conditions and freshly distilled sulfur
monochloride (S2Cl2) are key in attaining high yields and
purity. This is due to the photolytic instability of S2Cl2
over a wide range of wavelengths.57 Our current synthetic
method is effective, with addition times reduced by ca.
90% from earlier preparative methods.9 Longer reaction
(39) Duffy, E. M.; Severance, D. L.; Jorgensen, W. L. J. Am. Chem.
Soc. 1992, 114, 7535.
(40) Laidig, K. E.; Cameron, L. M. J. Am. Chem. Soc. 1996, 118,
1737.
(41) Wilson, N. K. J. Phys. Chem. 1971, 75, 1067.
(42) Raban, M.; Yamamoto, G. J. Am. Chem. Soc. 1979, 101, 5890.
(43) Rablen, P. R.; Miller, D. A.; Bullock, V. R.; Hutchinson, P. H.;
Gorman, J. A. J. Am. Chem. Soc. 1999, 121, 218.
(44) Cox, C.; Lectka, T. J. Org. Chem. 1998, 63, 2426.
(45) Rablen, P. R. J. Org. Chem. 2000, 65, 7930.
(46) Some have argued that the high observed barrier in amides is
due to the inherent preference for nitrogen planarity, resulting in its
effective increase in electronegativity and thus better ability to stabilize
itself. See for instance: Wiberg, K. B.; Breneman, C. M. J. Am. Chem.
Soc. 1992, 114, 831.
(47) Meyer, W. L.; Meyer, R. B. J. Am. Chem. Soc. 1963, 85, 2170.
(48) Grein, F. J. Phys. Chem. A. 2002, 106, 3823.
(49) Gust, D.; Mislow, K. J. Am. Chem. Soc. 1973, 95, 1535.
(50) Mislow, K.; Glass, M. A. W.; Hopps, H. B.; Simon, E.; Wahl, G.
H., Jr. J. Am. Chem. Soc. 1963, 86, 1710.
(51) Casarini, D.; Rosini, C.; Grilli, S.; Lunazzi, L.; Mazzanti, A. J.
Org. Chem. 2003, 68, 1815.
(52) Casarini, D.; Lunazzi, L.; Mazzanti, A. J. Org. Chem. 1997, 62,
3315.
(53) Sterically induced high torsional barriers are not limited to
rotation about carbon-carbon bonds. For instance, for rotation about
the sp2-sp2 carbon-nitrogen bond in N-aryl-tetrahydropyrimidines,
see: Beatriz Garcia, M.; Grilli, S.; Lunazzi, L.; Mazzanti, A.; Orelli, L.
R. J. Org. Chem. 2001, 66, 6679.
(54) For another example of a sterically induced high barrier to
rotation, i.e., rotation about the sp2-carbon-phosphorus bond in
secondary phosphine oxides, see: Gasparrini, F.; Lunazzi, L.; Mazzanti,
A.; Pierini, M.; Pietrusiewicz, K. M.; Villani, C. J. Am. Chem. Soc. 2000,
122, 4776.
(23) Harpp, D. N.; Nevins, N.; Snyder, J. P.; Zysman-Colman, E.
Manuscript in preparation.
(24) Baumeister, E.; Oberhammer, H.; Schmidt, H.; Steudel, R.
Heteroatom Chem. 1991, 2, 633.
(25) For a review on rotation about single bonds, see: Sternhell, S.
Dynamic Nuclear Magnetic Resonance Spectroscopy; Jackman, L. M.,
Cotton, F. A., Eds.; Academic Press: New York, 1975; Vol. 6.
(26) Schnur, D. M.; Yuh, Y. H.; Dalton, D. R. J. Org. Chem. 1989,
54, 3779.
(27) Li, P.; Chen, X. G.; Shulin, E.; Asher, S. A. J. Am. Chem. Soc.
1997, 119, 1116.
(28) Bushweller, C. H.; O’Neil, J. W.; Halford, M. H.; Bissett, F. H.
J. Am. Chem. Soc. 1971, 93, 1471.
(29) Scherer, G.; Kramer, M. L.; Schutkoxski, M.; Reimer, U.; Fisher,
G. J. Am. Chem. Soc. 1998, 120, 5568.
(30) Suarez, C.; Tafazzoli, M.; True, N. S.; Gerrard, S.; Lemaster,
C. B.; Lemaster, C. L. J. Phys. Chem. 1995, 99, 8170.
(31) Suarez, C.; Lemaster, C. B.; Lemaster, C. L.; Tafazzoli, M.; True,
N. S. J. Phys. Chem. 1990, 94, 6679.
(32) Stewart, W. E.; Siddall, T. H., III. Chem. Rev. 1970, 70, 517.
(33) Ross, B. D.; True, N. S.; Decker, D. L. J. Phys. Chem. 1983, 87,
89.
(34) Drakenberg, T.; Dahlqvist, K.-I.; Forse´n, S. J. Phys. Chem.
1972, 76, 2178.
(55) Hubbard, W. N.; Douslin, D. R.; McCullough, J. P.; Scott, D.
W.; Todd, S. S.; Messerly, J. F.; Hossenlopp, I. A.; George, A.;
Waddington, G. J. Am. Chem. Soc. 1958, 80, 3547.
(56) Cerioni, G.; Cremonini, M. A.; Lunazzi, L.; Placucci, G.; Plu-
mitallo, A. J. Org. Chem. 1998, 63, 3933.
(57) Einfeld, T. S.; Maul, C.; Gericke, K.-H. J. Chem. Phys. 2002,
117, 4214 and references therein.
(35) Wiberg, K. B.; Rablen, P. R.; Rush, D. J.; Keith, T. A. J. Am.
Chem. Soc. 1995, 117, 4261.
(36) Taha, A. N.; Neugebauer-Crawford, S. M.; True, N. S. J. Phys.
Chem. A 1998, 102, 1425.
(37) Taha, A. N.; True, N. S. J. Phys. Chem. A 2000, 104, 2985.
(38) Gao, J. J. Am. Chem. Soc. 1993, 115, 2930.
J. Org. Chem, Vol. 70, No. 15, 2005 5965