C O M M U N I C A T I O N S
Figure 1.
rich sequences. More elaborate minor groove binders17 should bind
other sequences. Modified hybridization probes may thus alleviate
both poor base pairing fidelity at the termini and the low duplex
stability of A/T-rich sequences, two issues central to increasing
the fidelity of DNA chips. High fidelity DNA chip data are
needed,18 and they may be obtained, if better biostatistics are
combined with improved molecular recognition on the chip.
Acknowledgment. Technical assistance by A. Hochgesand and
support by DFG (RI 1063/2; FOR 434) are acknowledged.
Supporting Information Available: Experimental protocols, NMR
or MS spectra for all new compounds (PDF). This material is available
Figure 2. Hybridization of 4Te/4Ce/4Tv/4Cv with Cy3-labeled 16; (left)
integration of fluorescence of spots, (right) fluorescence scan.
This encouraged us to attach the trimethoxystilbene to hybridiza-
tion probes immobilized on glass surfaces as part of a small DNA
microarray.14 Incubation with target 16 gave a more than 2-fold
stronger signal for 4Te over 4Tv (Figure 2). Even without
optimizing hybridization conditions and without picking a well
discriminating base pair, there was a clearly detectable discrimina-
tion against a terminal mismatch (4Ce), which was almost absent
for the unmodified controls (4Tv/4Cv).
Next, it was tested whether stilbene caps can bind synergistically
with oligopyrrolamides, when incorporated in DNA-minor groove
binder conjugates.15 When netropsin-derived pyrrolamides16 were
linked to all-A/T sequence 3 via aminomethyl stilbene g, introduced
through phosphoramidite 6, the resulting caps were strongly duplex
stabilizing (Table 1, entries 19-25). On the level of dimers, two
â-alanine linkers were better than one (caps i and j). A terminal
nitro group (cap k), which interferes with proper hydrogen bonding
in the minor groove by displaying an N-O moiety where an N-H
hydrogen bond donor is required, gave lower duplex stability.
Tetramer l, when linked through 2 â-alanines, gave a melting point
increase of 32.7 °C, shifting the Tm of the all-A/T duplex 3 into a
range typical for duplexes with higher G/C content. Control tetramer
m again had almost no effect on the Tm. Also, the base pairing
fidelity at the terminal base pair capped by the stilbene portion of
the DNA decamer is satisfactory (Table 2, entries 7-9).
Our data suggest that trimethoxystilbene caps selectively stabilize
duplexes with a matched terminal base pair. As binding elements
they may be called “orthogonal”, since they increase the affinity
for target strands without themselves offering binding motives for
other DNA sequences (as an elongation of the sequences would).
Molecular modeling shows that the methyl group of the 4′-methoxy
substituent protrudes out of the plane of the stilbene ring system
and may thus “gauge” the size of base pairs. The aminomethyl-
stilbene combined with minor groove binders produces “embracing
caps” that induce a very substantial melting point increase for A/T-
References
(1) Pirrung, M. C. Angew. Chem., Int. Ed. 2002, 41, 1277-1289.
(2) (a) Evertsz, E. M.; Au-Young, J.; Ruvolo, M. V.; Lim, A.C.; Reynolds,
M. A. BioTechniques 2001, 31, 1182-1192. (b) Zhang, L.; Miles, M. F.;
Aldape, K. D. Nat. Biotechnol. 2003, 21, 818-821. (c) Siegmund, K.;
Steiner, U. E.; Richert, C. J. Chem. Inf. Comput. Sci. 2003, 43, 2153-
2162.
(3) See, for example: (a) Bleczinski, C. F.; Richert, C. J. Am. Chem. Soc.
1999, 121, 10889-10894. (b) Connors, W. H.; Narayanan, S.; Kryatova,
O. P.; Richert, C. Org. Lett. 2003, 5, 247-250, and this work.
(4) Freier, S.M.; Kierzek, R.; Caruthers, M. H.; Neilson, T.; Turner, D. H.
Biochemistry 1986, 25, 3209-3213.
(5) SantaLucia, J. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 1460-1465.
(6) Kutyavin, I. V.; Afonina, I. A.; Mills, A.; Gorn, V. V.; Lukhtanov, E. A.;
Belousov, E. S.; Singer, M. J.; Walburger, D. K.; Lokhov, S. G.; Gall, A.
A.; Dempcy, R.; Reed, M. W.; Meyer, R. B.; Hedgpeth, J. Nucleic Acids
Res. 2000, 28, 655-661.
(7) (a) Altman, R. K.; Schwope, I.; Sarracino, D. A.; Tetzlaff, C. N.;
Bleczinski, C. F.; Richert, C. J. Comb. Chem. 1999, 1, 493-508. (b)
Mokhir, A. A.; Tetzlaff, C. N.; Herzberger, S.; Mosbacher, A.; Richert,
C. J. Comb. Chem. 2001, 3, 374-386.
(8) Festy, B.; Daune, M. Biochemistry 1973, 12, 4827-4834.
(9) Fukuhara, K.; Miyata, N. Bioorg. Med. Chem. Lett. 1998, 8, 3187-3192.
(10) Herrlein, M. K.; Letsinger, R. L. Angew. Chem., Int. Ed. Engl. 1997, 36,
599-601.
(11) (a) Lewis, F. D.; Wu, T.; Zhang, Y.; Letsinger, R. L.; Greenfield, S. R.;
Wasielewski, M. R. Science 1997, 277, 673-676. (b) Lewis, F. D.; Wu,
Y. S.; Liu, X. Y. J. Am. Chem. Soc. 2002, 124, 12165-12173.
(12) Lewis, F. D.; Liu, X.; Wu, Y.; Miller, S. E.; Wasielewski, M. R.; Letsinger,
R. L.; Sanishivili, R.; Joachimiak, A.; Tereshko, V.; Egli, M. J. Am. Chem.
Soc. 1999, 121, 9905-9906.
(13) Lewis, F. D.; Wu, T. F.; Liu, X. Y.; Letsinger, R. L.; Greenfield, S. R.;
Miller, S. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 2889-
2902.
(14) Dombi, K. L.; Griesang, N.; Richert, C. Synthesis 2002, 816-824.
(15) (a) Sinyakov, A. N.; Lokhov, S. G.; Kutyavin, I. V.; Gamper, H. B.; Meyer,
R. B. J. Am. Chem. Soc. 1995, 117, 4995-4996. (b) Szewcyk, J. W.;
Baird, E. E.; Dervan, P. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 1487-
1489. (c) Robles, J.; Rajur, S. B.; McLaughlin, L. W. J. Am. Chem. Soc.
1996, 118, 5820-5821.
(16) Bailly, C.; Chaires, J. B. Bioconjugate Chem. 1998, 9, 513-538.
(17) Kielkopf, C. L.; White, S.; Szewczyk, J. W.; Turner, J. M.; Baird, E. E.;
Dervan, P. B.; Rees, D. C. Science 1998, 282, 111-115.
(18) Tilstone, C. Nature 2003, 424, 610-612.
JA0394434
9
J. AM. CHEM. SOC. VOL. 126, NO. 15, 2004 4763