provide a powerful strategy for intramolecular nucleophile
delivery. For example, we recently used a temporary silicon
connection to tether a propargylsilane nucleophile to a range
of â-hydroxy aldehyde electrophiles.2d Treatment of the resulting
aldehyde 1 with TMSOTf in the presence of the Brønsted acid
scavenger tri-tert-butylpyrimidine (TTBP)9 led to the formation
of a single allenylsilane diastereoisomer 2 in good to very good
yield (Scheme 1).2d
A Brønsted Acid Mediated Cascade Enone
Synthesis from Aldehydes Containing a Tethered
Propargylsilane
Rui Ramalho,† Peter J. Jervis,† Benson M. Kariuki,†
Alexander C. Humphries,‡ and Liam R. Cox*,†
School of Chemistry, The UniVersity of Birmingham, Edgbaston,
Birmingham B15 2TT, U.K., and The Neuroscience Research
Centre, Merck, Sharp and Dohme, Terlings Park,
Harlow, Essex CM20 2QR, U.K.
SCHEME 1. Stereoselective Intramolecular Allenylation
ReceiVed October 31, 2007
While the reaction of silicon nucleophiles, such as allylsilanes,
propargylsilanes and related systems, with aldehydes is most
commonly effected by Lewis acids,10 Brønsted acids provide a
potentially attractive alternative activation source.11 For our
purposes, using a Brønsted acid in place of TMSOTf would
provide an operationally more simple cyclization method and
remove the need to employ expensive acid scavengers. Reaction
would also generate an alcohol, rather than a silyl ether product,
which is primed for further manipulation and potential use as a
directing group for the diasteroselective functionalization of the
proximal allene.12 From a practical viewpoint, a more polar
alcohol product would also facilitate product purification through
its more straightforward separation from the apolar silyl
byproducts and pyrimidine acid scavenger, which we employed
in our Lewis acid mediated intramolecular allenylation studies.
For these reasons, we were keen to investigate whether Brønsted
acids could also mediate our intramolecular allenylation reaction.
To this end, aldehyde 1a, containing a propargylsilane
tethered through a â-silyl ether connection, was prepared using
our established protocol.2d Although silicon nucleophiles are
MeSO3H effects the intramolecular allenylation of a series
of aldehydes 1 to provide allenyl alcohol product 3 as a single
diastereoisomer. Cyclization proceeds rapidly at -78 °C.
However, when the reaction is performed at room temper-
ature, aldehyde 1 provides enone product 7 instead. A
mechanism for the formation of this product is proposed in
which the initially formed allenyl alcohol 3 undergoes
dehydration to provide an allyl carbocation, which is trapped
with water, thereby installing the enone.
Forming a tether between two reacting partners allows a
subsequent reaction to proceed in an intramolecular fashion and
benefit from the advantages associated with unimolecular
processes. However, if the tether is then cleaved, the product
obtained is the result of a net intermolecular reaction.1 We2 and
others3-8 have demonstrated that temporary silicon tethers
(4) For applications in intramolecular vinylation: (a) Friestad, G. K.;
Jiang, T.; Mathies, A. K. Org. Lett. 2007, 9, 777-780. (b) Friestad, G. K.;
Massari, S. E. Org. Lett. 2000, 2, 4237-4240. (c) Hioki, H.; Izawa, T.;
Yoshizuka, M.; Kunitake, R.; Itoˆ, S. Tetrahedron Lett. 1995, 36, 2289-
2292.
(5) For applications in intramolecular arylation: (a) Rousseau, C.; Martin,
O. R. Org. Lett. 2003, 5, 3763-3766. (b) Huang, P.-Q.; Liu, L.-X.; Wei,
B.-G.; Ruan, Y.-P. Org. Lett. 2003, 5, 1927-1929. (c) Tomooka, K.;
Nakazaki, A.; Nakai, T. J. Am. Chem. Soc. 2000, 122, 408-409. See also
ref 4c.
† The University of Birmingham.
‡ Merck, Sharp and Dohme.
(1) For reviews on the use of the temporary connection in synthesis:
(a) Cox, L. R.; Ley, S. V. In Templated Organic Synthesis; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 2000; Chapter 10, pp 275-
375. (b) Bols, M.; Skrydstrup, T. Chem. ReV. 1995, 95, 1253-1277. (c)
Fensterbank, L.; Malacria, M.; Sieburth, S. M. Synthesis 1997, 813-854.
(d) Gauthier, D. R., Jr.; Zandi, K. S.; Shea, K. J. Tetrahedron 1998, 54,
2289-2338.
(2) (a) Beignet, J.; Cox, L. R. Org. Lett. 2003, 5, 4231-4234. (b)
Simpkins, S. M. E.; Kariuki, B. M.; Arico´, C. S.; Cox, L. R. Org. Lett.
2003, 5, 3971-3974. (c) Beignet, J.; Tiernan, J.; Woo, C. H.; Kariuki, B.
M.; Cox, L. R. J. Org. Chem. 2004, 69, 6341-6356. (d) Ramalho, R.;
Beignet, J.; Humphries, A. C.; Cox, L. R. Synthesis 2005, 3389-3397.
(3) For applications in intramolecular allylation: (a) Robertson, J.; Hall,
M. J.; Green, S. P. Org. Biomol. Chem. 2003, 1, 3635-3638. (b) Wipf, P.;
Aslan, D. C. J. Org. Chem. 2001, 66, 337-343. (c) Pilli, R. A.; Riatto, V.
B. Tetrahedron: Asymmetry 2000, 11, 3675-3686. (d) Fujita, K.; Inoue,
A.; Shinokubo, H.; Oshima, K. Org. Lett. 1999, 1, 917-919. (e) Frost, L.
M.; Smith, J. D.; Berrisford, D. J. Tetrahedron Lett. 1999, 40, 2183-2186.
(f) Hioki, H.; Okuda, M.; Miyagi, W.; Itoˆ, S. Tetrahedron Lett. 1993, 34,
6131-6134. (g) Reetz, M. T.; Jung, A.; Bolm, C. Tetrahedron 1988, 44,
3889-3898. (h) Martin, O. R.; Rao, S. P.; Kurz, K. G.; El-Shenawy, H. A.
J. Am. Chem. Soc. 1988, 110, 8698-8700.
(6) For applications in intramolecular hydride delivery: Anwar, S.; Davis,
A. P. Tetrahedron 1988, 44, 3761-3770.
(7) For applications in intramolecular aglycon delivery: (a) Stork, G.;
La Clair, J. J. J. Am. Chem. Soc. 1996, 118, 247-248. (b) Stork, G.; Kim,
G. J. Am. Chem. Soc. 1992, 114, 1087-1088. (c) Bols, M.; Hansen, H. C.
Chem. Lett. 1994, 1049-1052. (d) Bols, M. Acta Chem. Scand. 1993, 47,
829-834. (e) Bols, M. Tetrahedron 1993, 49, 10049-10060.
(8) See also: (a) Iwamoto, M.; Miyano, M.; Utsugi, M.; Kawada, H.;
Nakada, M. Tetrahedron Lett. 2004, 45, 8647-8651. (b) Robertson, J.; Hall,
M. J.; Stafford, P. M.; Green, S. P. Org. Biomol. Chem. 2003, 1, 3758-
3767. (c) O’Malley, S. J.; Leighton, J. L. Angew. Chem., Int. Ed. 2001, 40,
2915-2917.
(9) Crich, D.; Smith, M.; Yao, Q.; Picione, J. Synthesis 2001, 323-326.
(10) (a) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207-2293. (b)
Fleming, I.; Dunogue`s, J.; Smithers, R. Org. React. (N.Y.) 1989, 37, 57-
575.
(11) For a recent example from our own work: Jervis, P. J.; Cox, L. R.
Org. Lett. 2006, 8, 4649-4652.
(12) Marshall, J. A.; Tang, Y. J. Org. Chem. 1994, 59, 1457-1464.
10.1021/jo702351s CCC: $40.75 © 2008 American Chemical Society
Published on Web 01/16/2008
J. Org. Chem. 2008, 73, 1631-1634
1631