G. Sabitha et al. / Tetrahedron Letters 49 (2008) 919–922
921
OH OH
O
O
2, 2- DMP, DCM
PPTS, 1 h, 95%
EtMgBr, dry
30 min, 90%
16
OBn
OBn
25
24
96 : 4
OH
a) Pd/C, 1 h
b) IBX, DCM,
DMSO, 2 h.
AcOH : H2O
4:1
O
O
O
OMe
c) Na2HPO4. 2H2O,
NaClO2, 30 min
rt, 2 h, 90%
O
O
d) CH2N
2,Et2O
epi-Prelactone E
30 min, overall yield 55%
26
6
Scheme 4.
Asymmetric Synthesis; Morrison, J. D., Scott, J. W.,
Eds.; Academic Press: New York, 1984; 4, pp 1–226.
7. (a) Jung Kim, S.; Young Kang, H.; Sherman, D. H.
Synthesis 2001, 12, 1790–1793; (b) Tapadar, S.; Chakr-
aborty, T. K. Tetrahedron Lett. 2001, 42, 1375–1377; (c)
Yamashita, Y.; Saito, S.; Ishitani, H.; Kobayashi, S. J.
Am. Chem. Soc. 2003, 125, 3793–3798; (d) Csaky, A. G.;
Mba, M.; Plumet, J. Synlett 2003, 13, 2092–2094; (e)
Enders, D.; Hass, M. Synlett 2003, 14, 2182–2184; (f)
Chakraborty, T. K.; Tapadar, S. Tetrahedron Lett. 2003,
44, 2541–2543; (g) Pihko, P. M.; Erkkila, A. Tetrahedron
Lett. 2003, 44, 7607–7609; (h) Aggarwal, V. K.; Bae, I.;
Yoon Lee, H. Tetrahedron 2004, 60, 9725–9733; (i) Yadav,
J. S.; Bhaskar Reddy, K.; Sabitha, G. Tetrahedron Lett.
2004, 45, 6475–6476; (j) Miyazawa, M.; Narantsetseg, M.;
Yokoyama, H.; Yamaguchi, S.; Hirai, Y. Heterocycles
2004, 63, 1017–1021; (k) Dias, L. C.; Steil, L. J.;
Vasconcelos, V. A. Tetrahedron: Asymmetry 2004, 15,
147–150; (l) Yadav, J. S.; Sridhar Reddy, M.; Prasad, A.
R. Tetrahedron Lett. 2005, 46, 2133–2136; (m) Salaskar,
A. A.; Mayekar, N. V.; Sharma, A.; Nayak, S. K.;
Chatopadhyaya, A.; Chattopadhyay, S. Synthesis 2005,
16, 2777–2781; (n) Sellars, J. D.; Steel, P. G. Org. Biomol.
Chem. 2006, 4, 3223–3224; (o) Chandrasekhar, S.; Ramb-
abu, Ch.; Prakash, S. J. Tetrahedron Lett. 2006, 47, 1213–
1215; (p) Hinterding, K.; Singhanat, S.; Oberer, L.
Tetrahedron Lett. 2001, 42, 8463–8465.
sequence of reactions as described in Scheme 1, afforded
ester 23. Exposure of 23 to AcOH/H2O (4:1) at rt
furnished prelactone E, 5 in 90% yield (Scheme 3).
The synthesis of epi-prelactone E began with the inter-
mediate aldehyde 16. Accordingly, Grignard reaction
of 16 with excess EtMgBr in dry THF at ꢀ15 °C for
30 min afforded the 1,3-syn diol 24 in 90% yield. The
syn stereochemical relationship of diol 24 was verified
by analysis of the 13C NMR spectrum of the corre-
sponding acetonide 25. The chemical shifts of the aceto-
nide were observed at 98.7 and 19.6 ppm, in agreement
with values commonly observed for a syn diol.10 Deben-
zylation, IBX oxidation, conversion into the acid, and
treatment with diazomethane as before afforded ester
26. Reaction of 26 with AcOH/H2O (4:1) at rt afforded
epi-prelactone E, 6 (Scheme 4).
In conclusion, we have accomplished the stereoselective
synthesis of prelactones V, E and epi-prelactones V, E
using an Evans’ aldol reaction as the key step. The
methodology presented here is general and should allow
access to novel analogues of the prelactones.
8. (a) Evans, D. A. Aldrichim. Acta 1982, 15, 23; (b) Evans,
D. A.; Bartoli, J.; Shih, T. L. J. Am. Chem. Soc. 1981,
References and notes
1
2127–2129; (c) Spectral data: prelactone V (3): H NMR
(CDCl3, 300 MHz): d 3.93 (dt, J = 5.7, 7.2 Hz, 1H), 3.75
(dq, J = 6.2, 10.1 Hz, 1H), 2.9 (dd, J = 5.6, 16.6 Hz, 1H),
2.42 (dd, J = 7.2, 16.6 Hz, 1H), 1.98 (br, 1H, OH), 1.58
(ddq, J = 10.2, 7.2, 6.8 Hz, 1H), 1.38 (d, J = 6.2 Hz, 3H),
1.09 (d, J = 6.8 Hz, 3H); 13C NMR (CDCl3, 75 MHz):
170.5, 79.0, 69.6. 43.3, 39.0, 19.5, 13.7; EIMS: m/z 144
(M+); IR (neat): 3435, 2980, 2932, 1730, 1383, 1267, 1095,
1. Bindseil, K. U.; Zeeck, A. Helv. Chem. Acta 1993, 76, 150–
157, and references cited therein.
2. (a) Endo, J. A. J. Med. Chem. 1985, 28, 401–405; (b)
Honda, T.; Kametani, T.; Kanai, K.; Tatsuzaki, Y.;
Tsubuki, M. J. Chem. Soc., Perkin Trans. 1 1990, 1733–
1737; (c) Cavil, G. W. K.; Clark, D. V.; White field, F. B.
Aust. J. Chem. 1968, 21, 2819–2823.
3. (a) Boddien, C.; Gerber Nolte, J.; Zeeck, A. Liebigs Ann.
1996, 9, 1381–1384; (b) Cortes, J.; Wiesmann, K. E. H.;
Roberts, G. A.; Brown, M. J. B.; Staunton, J.; Leadlan, P.
F. Science 1995, 268, 1487–1489; (c) Esumi, T.; Fukay-
ama, H.; Oribe, R.; Kawazoe, K.; Iwabuchi, Y.; Irie, H.;
Hatakayama, S. Tetrahedron Lett. 1997, 38, 4823–4828;
(d) Hanefeld, U.; Hooper, A. M.; Stauntons, J. Synthesis
1999, 401–403.
4. (a) Argoudelis, A. D.; Zieserl, J. F. Tetrahedron Lett.
1966, 18, 1969; (b) Laurence, B. R. J. Chem. Soc., Chem.
Commun. 1982, 59.
5. O’ Hagen, D. In The Polyketide Metabolites., E. D.; Ellis
Horwood: New York, 1991; 116–137.
6. (a) Warmerdam, E.; Tranoy, I.; Renoux, B.; Gesson, J. P.
Tetrahedron Lett. 1998, 39, 8077–8080; (b) Hanessian, S.
Total Synthesis of Natural Products: The Chiron Approach;
Pergamon Press: Oxford, 1983; (c) Scott, J. W. In
25
1046, 979 cmꢀ1; ½aꢁD +31.5 (c 0.98, MeOH), [Reported7l
value: +32.8 (c 0.98, MeOH)]; epi-prelactone V (4): 1H
NMR (CDCl3, 300 MHz): 4.92 (qd, J = 3.7, 7.3, 1H), 4.07
(q, J = 4.4 Hz, 1H), 2.83 (dd, J = 5.1, 18.3 Hz, 1H), 2.53
(dd, J = 2.9, 18.3 Hz, 1H), 1.93 (m, 1H), 2.24 (br, 1H,
OH), 1.34 (d, J = 6.5 Hz, 3H), 0.98 (d, J = 7.3 Hz, 3H);
13C NMR (CDCl3, 75 MHz): 171.0, 74.9, 68.3, 38.2, 35.9,
17.6, 10.1; LCMS: 167 [M+Na]; IR (neat): 3424, 2924,
25
1714, 1458, 1381, 1078, 965 cmꢀ1; ½aꢁD ꢀ80.6 (c 1.3,
CHCl3), [Reported7o value: ꢀ81.8 (c 1.3, CHCl3)]; Prel-
actone E (5): 1H NMR: (CDCl3, 300 MHz): d 3.70–3.88
(m, 2H), 2.88 (dd, J = 6.0, 17.3 Hz, 1H), 2.48 (dd, J = 7.5,
16.6 Hz, 1H), 1.85 (m, 1H), 1.53–1.76 (m, 2H), 1.08 (d,
3H, J = 6.8 Hz), 1.03 (t, J = 7.5 Hz, 3H), 1.26 (br, 1H,
OH); 13C NMR (CDCl3, 75 MHz): 171.1, 83.5, 69.6, 40.4,
38.9, 25.7, 13.7, 8.7; LCMS: 181.1 [M+Na]; IR (neat):
25
3426, 2970, 1728, 1379, 1252, 1099, 950 cmꢀ1; ½aꢁD þ 40:4