Published OnlineFirst March 8, 2013; DOI: 10.1158/1535-7163.MCT-12-0949
Tan et al.
cancer pathogenesis and implications for therapeutic approaches.
Expert Opin Ther Targets 2012;16:S17–27.
safety, pharmacokinetics, pharmacodynamics, and antitumour activ-
ity. Lancet Oncol 2010;11:1149–59.
8. Corcoran RB, Settleman J, Engelman JA. Potential therapeutic strat-
egies to overcome acquired resistance to BRAF or MEK inhibitors in
BRAF mutant cancers. Oncotarget 2011;1–11.
9. Poulikakos PI, Solit DB. Resistance to MEK inhibitors: should we co-
target upstream? Sci Signal 2011;4:pe16.
10. Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman
KN, et al. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors
overcome acquired resistance to the BRAF inhibitor GSK2118436
dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther
2012;11:909–20.
11. Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco D, Smith
LS, et al. The clinical effect of the dual-targeting strategy involving
PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with
advanced cancer. Clin Cancer Res 2012;18:2316–25.
12. Cragg MS, Jansen ES, Cook M, Harris C, Strasser A, Scott CL.
Treatment of B-RAF mutant human tumor cells with a MEK inhibitor
requires BIM and is enhanced by a BH3 mimetic.J Clin Invest 2008;
118:3651–9.
13. Zheng L, Yang W, Zhang C, Ding W-J, Zhu H, Lin N-M, et al. GDC-
0941 sensitizes breast cancer to ABT-737 in vitro and in vivo
through promoting the degradation of Mcl-1. Cancer Lett 2011;309:
27–36.
14. Muranen T, Selfors LM, Worster DT, Iwanicki MP, Song L, Morales FC,
et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-
attached cancer cells. Cancer Cell 2012;21:227–39.
15. Dehan E, Bassermann F, Guardavaccaro D, Vasiliver-Shamis G,
Cohen M, Lowes KN, et al. bTrCP- and Rsk1/2-mediated degradation
of BIMEL inhibits apoptosis. Mol Cell 2009;33:109–16.
16. Yang J-Y, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X, et al. ERK
promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated
degradation. Nat Cell Biol 2008;10:138–48.
17. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW. MCL1 is
phosphorylated in the PEST region and stabilized upon ERK activation
in viable cells, and at additional sites with cytotoxic okadaic acid or
taxol. Oncogene 2004;23:5301–15.
18. Brunelle JK, Letai A. Control of mitochondrial apoptosis by the Bcl-2
family. J Cell Sci 2009;122:437–41.
19. Tse C, Shoemaker AR, Adickes J, Anderson MG, Chen J, Jin S, et al.
ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer
Res 2008;68:3421–8.
20. Ackler S, Mitten MJ, Foster K, Oleksijew A, Refici M, Tahir SK, et al. The
Bcl-2 inhibitor ABT-263 enhances the response of multiple chemo-
therapeutic regimens in hematologic tumors in vivo. Cancer Che-
mother Pharmacol 2010;66:869–80.
21. Wong M, Tan N, Zha J, Peale FV, Yue P, Fairbrother WJ, et al.
Navitoclax (ABT-263) reduces Bcl-xL-mediated chemoresistance in
ovarian cancer models. Mol Cancer Ther 2012;11:1026–35.
22. Shi J, Zhou Y, Huang HC, Mitchison TJ. Navitoclax (ABT-263) accel-
erates apoptosis during drug-induced mitotic arrest by antagonizing
Bcl-xL. Cancer Res 2011;71:4518–26.
29. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL,
et al. Substantial susceptibility of chronic lymphocytic leukemia to
BCL2 inhibition: results of a phase I study of navitoclax in patients with
relapsed or refractory disease. J Clin Oncol 2012;30:488–96.
30. Gandhi L, Camidge DR, Ribeiro de Oliveira M, Bonomi P, Gandara D,
Khaira D, et al. Phase I study of navitoclax (ABT-263), a novel Bcl-2
family inhibitor, in patients with small-cell lung cancer and other solid
tumors. J Clin Oncol 2011;29:909–16.
31. Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira M, Bonomi PD,
Camidge DR, et al. Phase II study of single-agent navitoclax (ABT-263)
and biomarker correlates in patients with relapsed small cell lung
cancer. Clin Cancer Res 2012;18:3163–9.
32. Jing J, Greshock J, Holbrook JD, Gilmartin A, Zhang X, McNeil E, et al.
Comprehensive predictive biomarker analysis for MEK inhibitor
GSK1120212. Mol Cancer Ther 2012;11:720–9.
33. Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, et al.
Identification of common predictive markers of in vitro response to the
MEK inhibitor selumetinib (AZD6244; ARRY-142886) in human breast
cancer and non-small cell lung cancer cell lines. Mol Cancer Ther
2010;9:1985–94.
34. Tentler JJ, Nallapareddy S, Tan AC, Spreafico A, Pitts TM, Morelli MP,
et al. Identification of predictive markers of response to the MEK1/2
inhibitor selumetinib (AZD6244) in K-ras-mutated colorectal cancer.
Mol Cancer Ther 2010;9:3351–62.
35. Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, et al.
Transcriptional pathway signatures predict MEK addiction and
response to selumetinib (AZD6244). Cancer Res 2010;70:2264–73.
36. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, et al.
Identification of RIP1 kinase as a specific cellular target of necrostatins.
Nat Chem Biol 2008;4:313–21.
37. Tzivion G, Dobson M, Ramakrishnan G. FoxO transcription factors:
regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta
2011;1813:1938–45.
38. Folkes AJ, Ahmadi K, Alderton WK, Alix S, Baker SJ, Box G, et al. The
identification of 2-(1 H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-
1-ylmethyl)-4-morpholin-4-yl-thieno[3,2- d]pyrimidine (GDC-0941) as
a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for
the treatment of cancer †. J Med Chem 2008;51:5522–32.
39. Salphati L, Wong H, Belvin M, Bradford D, Edgar KA, Prior WW, et al.
Pharmacokinetic-pharmacodynamic modeling of tumor growth inhi-
bition and biomarker modulation by the novel phosphatidylinositol 3-
kinase inhibitor GDC-0941. Drug Metab Dispos 2010;38:1436–42.
40. Salphati L, Pang J, Plise EG, Chou B, Halladay JS, Olivero AG, et al.
Preclinical pharmacokinetics of the novel PI3K inhibitor GDC-0941 and
prediction of its pharmacokinetics and efficacy in human. Xenobiotica
2011;41:1088–99.
41. Pratilas CA, Taylor BS, Ye Q, Viale A, Sander C, Solit DB, et al. (V600E)
BRAF is associated with disabled feedback inhibition of RAF-MEK
signaling and elevated transcriptional output of the pathway. Proc Natl
Acad Sci USA 2009;106:4519–24.
23. Chen J, Jin S, Abraham V, Huang X, Liu B, Mitten MJ, et al. The Bcl-2/
Bcl-XL/Bcl-w inhibitor, navitoclax, enhances the activity of chemo-
therapeutic agents in vitro and in vivo. Mol Cancer Ther 2011;10:
2340–9.
42. Yamamoto T, Ebisuya M, Ashida F, Okamoto K, Yonehara S, Nishida E.
Continuous ERK activation downregulates antiproliferative genes
throughout G1 phase to allow cell-cycle progression. Curr Biol
2006;16:1171–82.
24. Tan N, Malek M, Zha J, Yue P, Kassees R, Berry L, et al. Navitoclax
enhances the efficacy of taxanes in non-small cell lung cancer models.
Clin Cancer Res 2011;17:1394–404.
43. Jones SM, Kazlauskas A. Growth-factor-dependent mitogenesis
requires two distinct phases of signalling. Nat Cell Biol 2001;3:165–72.
ꢀ
44. Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J.
25. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B,
et al. MEK inhibition enhances ABT-737-induced leukemia cell apo-
ptosis via prevention of ERK-activated MCL1induction and modula-
tion of MCL-1/BIM complex. Leukemia 2012;26:778–87.
Nuclear translocation of p42/p44 mitogen-activated protein kinase is
required for growth factor-induced gene expression and cell cycle
entry. EMBO J 1999;18:664–74.
45. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM, et al.
Synthetic lethal interaction of combined BCL-XL and MEK inhibition
promotes tumor regressions in KRAS mutant cancer models. Cancer
Cell 2013;23:121–8.
46. Sale M, Cook S. The BH3-mimetic ABT-263 synergizes with the MEK1/
2 inhibitor selumetinib/AZD6244 to promote BIM-dependent tumour
cell death and inhibit acquired resistance. Biochem J 2013;450:
285–94.
ꢀ
26. Lehar J, Stockwell BR, Giaever G, Nislow C. Combination chemical
genetics. Nat Chem Biol 2008;4:674–81.
27. JC P, DM B. Mixed-effects models in S and S-PLUS. New York:
Springer-Verlag; 2000.
28. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano
JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of
BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of
Mol Cancer Ther; 12(6) June 2013
Molecular Cancer Therapeutics
864
Downloaded from mct.aacrjournals.org on May 1, 2015. © 2013 American Association for Cancer Research.