architectures of these oligomers further suggest their potential in
fabricating novel supramolecular nanoarchitectures.
PKB is thankful to CSIR, New Delhi, for a Senior Research
Fellowship. This work was funded partly by the International
Foundation for Science (IFS), Sweden; Grant No. F/4193-1, and
the Department of Science and Technology (DST), New Delhi.
Fig. 4 (A), (B), and (C): TEM images of the oligomers 2, 3, and 4,
respectively, deposited on carbon coated polymer film. Corresponding
selected area electron diffraction (SAED) patterns are shown in the inset.
Note: Full-size figures are available in the ESI (S25, S26).{
Notes and references
{ Crystallographic data of 2: CCDC 640754. For crystallographic data in
CIF or other electronic format see DOI: 10.1039/b713229h
NOEs for 2: Aib1 vs. NH1 vs. OMe1 vs. NH2 vs. Aib2 vs. NH3 vs.
OMe2). Further, we also note a characteristic dipolar coupling
between the NHs of adjacent residues (S24, ESI{) in both 2 and 3.
Indeed, closer inspection of the crystal structure of 2 reveals the
close proximity of NHs of adjacent residues in the extended
1 (a) S. H. Gellman, Acc. Chem. Res., 1998, 31, 173; (b) D. J. Hill,
M. J. Mio, R. B. Prince, T. S. Hughes and J. S. Moore, Chem. Rev.,
2001, 101, 3893.
2 For representative recent reviews, see: (a) M. D. Smith and G. W. J. Fleet,
J. Pept. Sci., 1999, 5, 425; (b) K. D. Stigers, M. J. Soth and J. S. Nowick,
Curr. Opin. Chem. Biol., 1999, 3, 714; (c) A. R. Sanford, K. Yamato,
X. Yang, L. Yuan, Y. Han and B. Gong, Eur. J. Biochem., 2004, 271,
1416; (d) I. Huc, Eur. J. Org. Chem., 2004, 17; (e) J. M. Davis, L. K. Tsou
and A. D. Hamilton, Chem. Soc. Rev., 2007, 36, 326.
3 (a) L. A. Estroff, C. D. Incarvito and A. D. Hamilton, J. Am. Chem.
Soc., 2004, 126, 2; (b) H. Yin, G.-I. Lee, H. S. Park, G. A. Payne,
J. M. Rodriguez, S. M. Sebti and A. D. Hamilton, Angew. Chem., Int.
Ed., 2005, 44, 2704; (c) C. A. Hunter, A. Spitaleri and S. Tomas, Chem.
Commun., 2005, 3691; (d) K. Balakrishnan, A. Datar, W. Zhang,
X. Yang, T. Naddo, J. Huang, J. Zuo, M. Yen, J. S. Moore and
L. Zang, J. Am. Chem. Soc., 2006, 128, 6576; (e) Z. Rodriguez-
Docampo, S. I. Pascu, S. Kubik and S. Otto, J. Am. Chem. Soc., 2006,
128, 11206; (f) R. W. Sinkeldam, F. J. M. Hoeben, M. J. Pouderoijen,
I. De Cat, J. Zhang, S. Furukawa, S. De Feyter, J. A. J. M. Vekemans
and E. W. Meijer, J. Am. Chem. Soc., 2006, 128, 16113; (g) L. He,
Y. An, L. Yuan, W. Feng, M. Li, D. Zhang, K. Yamato, C. Zheng,
X. C. Zeng and B. Gong, Proc. Natl. Acad. Sci. U. S. A., 2006, 103,
10850; (h) N. Delsuc, J.-M. Le´ger, S. Massip and I. Huc, Angew. Chem.,
Int. Ed., 2007, 46, 214; (i) P. K. Baruah, N. K. Sreedevi, R. Gonnade,
S. Ravindranathan, K. Damodaran, H.-J. Hofmann and G. J. Sanjayan,
J. Org. Chem., 2007, 72, 636; (j) P. K. Baruah, R. Gonnade,
P. R. Rajamohanan, H.-J. Hofmann and G. J. Sanjayan, J. Org.
Chem., 2007, 72, 5077.
˚
conformation (d: 2.8 A). In order to provide insights into the
hydrogen-bonding interactions in solution, we also performed
[D6]DMSO titration studies on the oligomer 3 (details in ESI,
S27{). The titration results reveal that all the NHs show downfield
shifts upon increasing the concentration of [D6]DMSO (from 0 to
50 mL), suggesting their role in intermolecular interactions. The
effect is particularly pronounced for all the Aib NHs of the
octapeptide 3 (Dd y 1 ppm).
To investigate the morphological architecture and its effect on
the length of the oligomer, we analyzed the self-assembled
structures by TEM. Fig. 4A, B, and C show the TEM images of
the oligomers 2, 3, and 4, respectively, deposited on carbon coated
polymer film.
Comparison of the photomicrographs of the oligomers:
tetrameric foldamer 2 vs. octamer 3 vs. hexadecamer 4, reveals
an interesting structural aspect. As the oligomer size increases, the
morphological architecture transforms from crystalline needle
shape (Fig. 4A) to entangled nanofibrils (Fig. 4C). In the case of
the tetrameric foldamer 2, the particles are needle shaped and are
flat, as evident from the Mo`ire pattern seen from the overlapping
of two needle shaped nanoparticles (indicated by an arrow in
Fig. 4A). Further, the particles of 2 with size #400 nm are
crystalline in nature as shown by the SAED pattern in the inset
(Fig. 4A). In the case of octamer 3, the size of the particle is #3 mm
and the SAED pattern shown in the inset (Fig. 4B) is diffused,
indicating a loss in the crystalline structure. However, the
microscopic image of the hexadecamer foldamer 4 (Fig. 4C)
reveals fibril piles composed of entangled nanofibrils, a morpho-
logical signature of extensive self-assembly.9
4 H. Zeng, R. S. Miller, R. A. Flowers and B. Gong, J. Am. Chem. Soc.,
2000, 122, 2635.
5 L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma, Chem.
Rev., 2001, 101, 4071.
6 The a-aminoisobutyric acid (Aib) residue has been shown to be
significantly more effective than L-proline in inducing b-sheet disruption
in short model peptides. See: F. Formaggio, A. Bettio, V. Moretto,
M. Crismo, C. Toniolo and Q. B. Broxterman, J. Pept. Sci., 2003, 9,
461.
7 The a-aminoisobutyric acid (Aib) residue strongly promotes helical
structure. For excellent reviews, see: (a) J. Venkatraman,
S. C. Shankaramma and P. Balaram, Chem. Rev., 2001, 101, 3131; (b)
C. Toniolo, F. Formaggio, B. Kaptein and Q. B. Broxterman, Synlett,
2006, 1295.
8 A. C. Cuello and K. F. S. Bell, Curr. Med. Chem.: Cent. Nerv. Syst.
Agents, 2005, 5, 15.
In summary, we have developed novel synthetic oligomers that
adopt well-defined, compact, three-dimensional architectures,
governed by a combined conformational restriction imposed by
the individual amino acid constituents. The notable feature of
these Aib-rich synthetic oligomers is their ability to form self-
assembled sheet-like structures through extensive intermolecular
hydrogen bonding interactions from the backbone amide groups,
an observation that is in stark contrast to the general observation
that Aib is proven as a sheet breaking amino acid, at least in
oligomers composed of a-amino acids.6 Therefore, these results
suggest the utility of the hybrid foldamer strategy in modulating
conformational preferences of individual amino acids in oligomer
sequences. The results of investigation of the morphological
9 (a) J. M. Smeenk, M. B. J. Otten, J. Thies, D. A. Tirrell,
H. G. Stunnenberg and J. C. M. van Hest, Angew. Chem., Int. Ed.,
2005, 44, 1968; (b) K. K. Prasad, C. S. Purohit, A. Jain,
R. Sankararamakrishnan and S. Verma, Chem. Commun., 2005, 2564.
10 The a-aminoisobutyric (Aib) residue is highly conformationally
restricted, with allowed conformations lying largely in the region w ¡
60u, y ¡ 30u, see: C. Toniolo, M. Crisma, F. Formaggio and
C. Peggion, Biopolymers, 2001, 60, 396.
11 M. C. Etter, Acc. Chem. Res., 1990, 23, 120.
12 G. R. Desiraju and R. Parthasarathy, J. Am. Chem. Soc., 1989, 111,
8725.
13 A. Kendhale, R. Gonnade, P. R. Rajamohanan and G. J. Sanjayan,
Chem. Commun., 2006, 2756.
14 D. Srinivas, R. Gonnade, S. Ravindranathan and G. J. Sanjayan,
Tetrahedron, 2006, 62, 10141.
15 M. K. N. Qureshi and M. D. Smith, Chem. Commun., 2006, 5006.
714 | Chem. Commun., 2008, 712–714
This journal is ß The Royal Society of Chemistry 2008