994
P. Das et al. / Tetrahedron Letters 49 (2008) 992–995
tion of 2,4,5-trisubstituted pyrimidines 114 with dithiocarb-
amates 2 in the presence of CuO (0.2 equiv) and K2CO3 in
DMF at 60 °C for 2 h furnished the desired substituted
purines 3–7 (Table 3) in good yields.15
In conclusion, we have developed an efficient and prac-
tical procedure for the synthesis of a wide variety of 2-(N-
substituted)-aminobenzimidazoles using a catalytic amount
of CuO and nontoxic dithiocarbamate. This procedure can
be scaled-up and can be applied to synthesize many poten-
tial drug candidates.
12. A typical experimental procedure: To a suspension of 4-methyl-
benzene-1,2-diamine (0.1 g, 0.819 mmol) (Table 1, entry 1) and
methylphenylcarbamodithioate (0.165 g, 0.901 mmol) (entry 1) in
2 ml of DMF were added CuO (0.013 g, 0.163 mmol) and K2CO3
(0.226 g, 1.63 mmol). The resulting mixture was heated to 60 °C and
kept at this temperature for 30 min. The reaction mixture was then
cooled to room temperature and filtered through Celite and washed
with ethyl acetate (100 ml). The combined filtrate was washed with
brine and water. The organic layer was dried over Na2SO4 and
concentrated in vacuo and the resulting mixture chromatographed on
silica gel (hexane–acetone, 90:10) to yield 5-methyl-N-phenyl-1H-
benzo[d]imidazol-2-amine (0.137 g, 78% yield) as a light yellow solid:
mp 164–165 °C; 1H NMR (DMSO-d6, 400 MHz) d 10.74 (s, 1H) 9.28
(d, J = 13.2 Hz, 1H) 7.73 (d, J = 8 Hz, 2H) 7.31–7.27 (m, 2H) 7.21–
6.77 (m, 4H) 2.35 (s, 3H); 13C NMR (50 MHz, DMSO-d6) d 150.46,
141.04, 140.43, 132.95, 130.59, 128.78, 121.23, 120.43, 116.99, 116.34,
115.54, 21.32; MS (ESI) 224 (M+H+); HPLC = 99.56%.
Acknowledgements
We thank Dr. Reddy’s Laboratories Ltd for financial
support and encouragement. Help from the analytical
department in recording spectral data is appreciated.
13. (a) Carmena, M.; Earnshaw, W. C. Nat. Mol. Cell. Biol. 2003, 4, 842;
(b) Matthews, N.; Visintin, C.; Hartzoulakis, B.; Jarvis, A.; Selwood,
D. L. Expert Rev. Anticancer Ther. 2006, 6, 109–120; (c) Marumoto,
T.; Zhang, D.; Saya, H. Nat. Rev. Cancer 2005, 5, 42–50; (d) Lee, E.
C. Y.; Frolov, A.; Li, R.; Ayala, G.; Greenberg, N. M. Cancer Res.
2006, 66, 4996–5002.
References and notes
14. Compound 1 was synthesized from commercially available 5-nitro-
uracil. Das, P.; Kirankumar, C.; Iqbal, J., unpublished results.
15. Experimental procedure and spectral data for compound 3: To a
suspension of 1 (0.1 g, 0.333 mmol) and methyl 4-chlorophenylcar-
bamodithioate 2 (0.079 g, 0.364 mmol) in 2 ml of DMF were added
CuO (0.005 g, 0.066 mmol) and K2CO3 (0.092 g, 0.666 mmol). The
resulting mixture was heated to 60 °C and kept at this temperature for
2 h. The reaction mixture was then cooled to room temperature and
filtered through Celite and washed with ethyl acetate (100 ml). The
combined filtrate was washed with brine and water. The organic layer
was dried over Na2SO4 and concentrated in vacuo and the resulting
mixture chromatographed on silica gel (DCM/MeOH, 97:3) to yield
compound 3 (0.108 g, 75% yield). The physical data of the synthesized
compounds are reported below.
1. (a) Beaulieu, C.; Wang, Z.; Denis, D.; Greig, G.; Lamontagne, S.;
O’Neill, G.; Slipetz, D.; Wang, J. Bioorg. Med. Chem. Lett. 2004, 14,
3195–3199; (b) Kling, A.; Backfisch, G.; Delzer, J.; Geneste, H.;
Graef, C.; Hornberger, W.; Lange, U.; Lauterbach, A.; Seitz, W.;
Subkowski, T. Bioorg. Med. Chem. 2003, 11, 1319–1341; (c) Snow, R.
J.; Cardozo, M. G.; Morwick, T. M.; Busacca, C. A.; Dong, Y.;
Eckner, R. J.; Jacober, S.; Jakes, S.; Kapadia, S.; Lukas, S.;
Panzenbeck, M.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.,
III; Sellati, R.; Tolbert, R. M.; Tschantz, M. A.; Moss, N. J. Med.
Chem. 2002, 45, 3394–3405; (d) Mukhopadhyay, T.; Sasaki, J.;
Ramesh, R.; Roth, J. A. Clin. Cancer Res. 2002, 8, 2963–2969; (e)
Janssens, F.; Torremans, J.; Janssen, M.; Stokbroekx, R. A.; Luyckx,
M.; Janssen, P. A. J. Med. Chem. 1985, 28, 1925–1933.
2. (a) Gabrial, N. V.; Roberto, C.; Alicia, H. C.; Liian, Y.; Francisco, H.
L.; Juan, V.; Raul, M.; Rafael, C.; Manuel, H.; Rafael, C. Bioorg.
Med. Chem. Lett. 2001, 11, 187; (b) Palmer, B. D.; Kraker, A. J.;
Hartl, B. G.; Panopoulos, A. D.; Panek, R. L.; Batley, B. L.; Lu, G.
H.; Trumpp-Kallmeyer, S.; Hollis Showalter, H. D.; Denny, W. A. J.
Med. Chem. 1999, 42, 2373; (c) Madsen, P.; Knudsen, L. B.; Wiberg,
F. C.; Carr, R. D. J. Med. Chem. 1998, 41, 5150; (d) Fears, S. D.;
O’Jare, J. Antimicrob. Agents Chemother. 1998, 32, 114; (e) Al-
Muhaimeed, H. Int. Med. Res. 1997, 25, 175.
3. Perkins, J. L.; Zartman, A. E.; Meissner, R. S. Tetrahedron Lett. 1999,
40, 1103–1106.
4. Omar, A.-M. M. E.; Ragab, M. S.; Farghaly, A. M.; Barghash, A. M.
Pharmazie 1976, 31, 348–350.
5. Wang, X.; Zhang, L.; Zu, Y.; Krishnamurthy, D.; Senanayake, C. H.
Tetrahedron Lett. 2004, 45, 7167–7170.
6. Omar, A.-M. M. E. Synthesis 1974, 41–42.
7. Heinelt, U.; Schultheis, D.; Jager, S.; Lindermaier, M.; Pollex, A.;
Beckmann, H. S. G. Tetrahedron 2004, 60, 9883–9888.
8. Omar, A.-M. M. E.; Habib, N. S.; Aboulwafa, O. M. Synthesis 1977,
864–865.
9. Cee, V. J.; Downing, N. S. Tetrahedron Lett. 2006, 47, 3747–3750.
10. (a) Azizi, N.; Ebrahimi, F.; Aakbari, E.; Aryansab, F.; Saidi, M. R.
Synthesis 2007, 2797–2800; (b) Azizi, N.; Aryanasab, F.; Torkiyan, L.;
Ziyaei, A.; Saidi, M. R. J. Org. Chem. 2006, 71, 3634–3635; (c) Azizi,
N.; Aryanasab, F.; Saidi, M. R. Org. Lett. 2006, 8, 5275–5277; (d)
Wang, Y.-Q.; Ge, Z.-M.; Hou, X.-L.; Cheng, T.-M.; Li, R.-T.
Synthesis 2004, 675–678; (e) Salvatore, R. N.; Sahab, S.; Jung, K. W.
Tetrahedron Lett. 2001, 42, 2055–2058.
Compound 3. Yellow solid; mp 215–217 °C; IR (KBr, cmÀ1) 2959,
2924, 1672, 1610, 1565, 1494, 1453, 1411; 1H NMR (DMSO-d6,
400 MHz) d 9.67 (s, 2H), 8.42 (s, 1H), 7.93 (d, J = 8.8 Hz, 2H), 7.44–
7.42 (m, 2H), 7.24–7.17 (m, 3H), 3.78–3.71 (m, 4H), 3.69 (s, 3H), 3.14–
3.12 (m, 4H); 13C NMR (DMSO-d6, 50 MHz) d 154.77, 153.01,
151.43, 149.63, 142.23, 142.16, 139.07, 128.70, 128.42, 126.95, 125.09,
119.79, 109.45, 107.81, 104.95, 66.14, 48.74, 27.60; MS (ESI) 436
(M+H+); HRMS calcd for C22H23N7OCl [M+H+] 436.1653, found:
436.1645.
Compound 4. Brown solid; mp 268–270 °C; IR (KBr, cmÀ1) 3255,
1
2961, 2803, 1606, 1553, 1537; H NMR (DMSO-d6, 400 MHz) d 9.41
(s, 1H), 8.95 (s, 1H), 8.3 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.74 (d,
J = 9.2 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H),
3.76–3.73 (m, 4H), 3.65 (s, 3H), 3.17–3.05 (m, 4H); 13C NMR
(DMSO-d6, 50 MHz) d 153.87, 153.46, 150.84, 146.39, 140.84, 140.58,
132.29, 128.11, 127.84, 123.28, 119.91, 119.01, 115.62, 66.12, 49.16,
27.57; MS (ESI) 436 (M+H+); HRMS calcd for C22H23N7OCl
[M+H+] 436.1653, found: 436.1638.
Compound 5. Pink solid; mp 191–193 °C; IR (KBr, cmÀ1) 3259, 3046,
1
2802, 1606, 1557, 1514, 1490; H NMR (DMSO-d6, 400 MHz) d 9.43
(s, 1H), 8.93 (s, 1H), 8.32 (s, 1H), 7.89 (d, J = 8.8 Hz, 2H), 7.71 (d,
J = 9.2 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 8.8 Hz, 2H),
3.65 (s, 3H), 3.09 (m, 4H), 2.50 (s, 3H), 2.49–2.44 (m, 4H); 13C NMR
(DMSO-d6, 50 MHz) d 153.87, 153.48, 150.89,146.42, 140.80, 140.60,
131.97, 128.12, 127.89, 123.30, 119.97, 119.03, 115.84, 54.65, 48.76,
45.72, 27.57; MS (ESI) 449 (M+H+); HRMS calcd for C23H26N8Cl
[M+H+] 449.1969, found: 449.1953.
Compound 6. Brown solid; mp 319–320 °C; IR (KBr, cmÀ1) 3335,
2927, 2857, 1603, 1568, 1524, 1436, 1409, 1323; 1H NMR (DMSO-d6,
400 MHz) d 10.08 (s, 1H), 9.22 (s, 1H), 8.29 (s, 1H), 8.31 (s, 1H), 7.96
(d, J = 6.8 Hz, 2H), 7.81 (d, J = 9.2 Hz, 2H), 7.74 (d, J = 9.2 Hz, 2H),
11. In this reaction protocol, increasing the amount of catalyst loading up
to 1 equiv did not show noticeable improvement in product conver-
sion whereas a reduced catalyst loading (0.1 equiv) led to a significant
drop in product conversion.