5-Benzylidene-2,2-dimethyl[1,3]dioxane-4,6-diones
TABLE 1. N and s Parameters of the Carbanions 2a-i in DMSO
The nucleophilic attack at the electron-deficient double bond
of Michael acceptors has long been a field of great interest in
physical organic chemistry. Bernasconi studied the kinetics of
the reactions of numerous amines, carbanions, and alkoxides
toward Michael acceptors, e.g., benzylidene indandiones and
benzylidene Meldrum’s acids in DMSO/H2O mixtures.17-21
Rappoport investigated nucleophilic vinylic substitutions22 on
chloro-substituted benzylidene Meldrum’s acids which follow
the addition-elimination mechanism.21,23 In recent years, Oh
and Lee24 reported mechanistic studies and rate constants of
the reactions of benzylamines with benzylidene Meldrum’s acids
and other Michael acceptors in acetonitrile.
Benzylidene Meldrum’s acids 1 are usually prepared by
condensation of an aldehyde with Meldrum’s acid in the
presence of catalytic amounts of acid25 or base in benzene or
chloroform solutions,26 but in some cases subsequent cycliza-
tions occur.26c Improved yields have been obtained under
solvent-free conditions by grinding the reactants,27 by DMAP
catalysis,28 or by using water29 or ionic liquids30 as solvents.
Compounds 1 are useful reactants for the synthesis of pharma-
cologically active heterocyclic compounds.31
In 1964, benzylidene Meldrum’s acids have been termed
“electronically neutral Lewis acids” by Swoboda and Wessely.25
Schuster, Polansky and Wessely reported equilibrium constants
for the addition of methoxide to a variety of neutral organic
Lewis acids, including benzylidene Meldrum’s acids.32 The
formation of zwitterionic addition products from neutral organic
Lewis acids and amines or phosphanes was reported by
Margaretha.33
a From ref 5. b From ref 4.
SCHEME 1. Reaction of the Carbanions 2 (K+ Salts) with
the Benzylidene Meldrum’s Acids 1a-d
(16) Remennikov, G. Y.; Kempf, B.; Ofial, A. R.; Polborn, K.; Mayr,
H. J. Phys. Org. Chem. 2003, 16, 431-437.
(17) Bernasconi, C. F.; Panda, M. J. Org. Chem. 1987, 52, 3042-3050.
(18) Bernasconi, C. F. Tetrahedron 1989, 45, 4017-4090.
(19) (a) Bernasconi, C. F.; Fornarini, S. J. Am. Chem. Soc. 1980, 102,
5329-5336. (b) Bernasconi, C. F.; Leonarduzzi, G. D. J. Am. Chem. Soc.
1980, 102, 1361-1366.
(20) (a) Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108,
5251-5257. (b) Bernasconi, C. F.; Leonarduzzi, G. D. J. Am. Chem. Soc.
1982, 104, 5133-5142.
(21) Bernasconi, C. F.; Ketner, R. J.; Chen, X.; Rappoport, Z. J. Am.
Chem. Soc. 1998, 120, 7461-7468.
(22) Rappoport, Z. Acc. Chem. Res. 1992, 25, 474-479.
(23) Ali, M.; Biswas, S.; Rappoport, Z.; Bernasconi, C. F. J. Phys. Org.
Chem. 2006, 19, 647-653.
Rate and equilibrium constants for the additions of amines
to the electrophilic double-bond of these Michael acceptors were
determined34a,b and the kinetics of their hydrolytic cleavage was
investigated in 10% aqueous methanol.34b Regio- and stereo-
selective Cu-catalyzed additions of alkynes35 and R2Zn to
benzylidene Meldrum’s acids have recently been reported by
Carreira36 and Fillion.37
The higher electrophilic reactivity of benzylidene Meldrum’s
acids compared to benzylidene malonic esters, their open-chain
analogues, is related to the unusually high acidity of the
Meldrum’s acid, which was attributed to the fixed bis-anti
conformation of the ester groups.38 Recently, Nakamura em-
(24) (a) Oh, H. K.; Kim, T. S.; Lee, H. W.; Lee, I. Bull. Korean Chem.
Soc. 2003, 24, 193-196. (b) Oh, H. K.; Lee, J. M. Bull. Korean Chem.
Soc. 2002, 23, 1459-1462.
(25) (a) Swoboda, G.; Swoboda, J.; Wessely, F. Monatsh. Chem. 1964,
95, 1283-1304. (b) Review: Kunz, J. F.; Margaretha, P.; Polansky, O. E.
Chimia 1970, 24, 165-208.
(26) (a) Schuster, P.; Polansky, O. E.; Wessely, F. Monatsh. Chem. 1964,
95, 53-58. (b) McNab, H. Chem. Soc. ReV. 1978, 7, 345-358. (c)
Margaretha, P. Tetrahedron Lett. 1970, 11, 1449-1452. (d) Chen, B. C.
Heterocycles 1991, 32, 529-597.
(27) Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Tetrahedron 2003,
59, 3753-3760.
(28) Narsaiah, A. V.; Basak, A. K.; Visali, B.; Nagaiah, K. Synth.
Commun. 2004, 34, 2893-2901.
(29) Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori,
G. Tetrahedron Lett. 2001, 42, 5203-5205.
(30) Hu, Y.; Wei, P.; Huang, H.; Le, Z.-G.; Chen, Z.-C. Synth. Commun.
2005, 35, 2955-2960.
(34) (a) Schreiber, B.; Martinek, H.; Wolschann, P.; Schuster, P. J. Am.
Chem. Soc. 1979, 101, 4708-4713. (b) Margaretha, P.; Leitlich, J.;
Polansky, O. E. Tetrahedron Lett. 1969, 11, 4429-4432. (c) Margaretha,
P.; Schuster, P.; Polansky, O. E. Tetrahedron 1971, 27, 71-79.
(35) (a) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46,
4964-4967. (b) Kno¨pfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J.
Am. Chem. Soc. 2005, 127, 9682-9683. (c) Kno¨pfel, T. F.; Carreira, E. M.
J. Am. Chem. Soc. 2003, 125, 6054-6055.
(31) (a) Tu, S.; Zhu, X.; Zhang, J.; Xu, J.; Zhang, Y.; Wang, Q.; Jia, R.;
Jiang, B.; Zhang, J.; Yao, C. Bioorg. Med. Chem. Lett. 2006, 16, 2925-
2928. (b) Pita, B.; Sotelo, E.; Suarez, M.; Ravina, E.; Ochoa, E.; Verdecia,
Y.; Novoa, H.; Blaton, N.; De Ranter, C.; Peeters, O. M. Tetrahedron 2000,
56, 2473-2479.
(32) Schuster, P.; Polansky, O. E.; Wessely, F. Tetrahedron 1966, Suppl.
8 (II), 463-483.
(33) Margaretha, P.; Polansky, O. E. Monatsh. Chem. 1969, 100, 576-
583.
(36) Watanabe, T.; Kno¨pfel, T. F.; Carreira, E. M. Org. Lett. 2003, 5,
4557-4558.
(37) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774-2775.
J. Org. Chem, Vol. 73, No. 7, 2008 2739