The common ways to obtain this type of compounds are
intramolecular N-H insertions through decomposition of dia-
zocarbonyl compounds by Lewis acid or protic acid,7 and radical
carbonylation-reductive cyclizations.8
Although the above-mentioned reactions provide diverse
access to these compounds, there are only limited methods to
synthesize them in an enantioselective manner.3a,c,6e,h,7e,9 Con-
sequently, it is highly desirable to develop efficient methods
that allow one to access substituted 2-oxo and 3-oxo pyrrolidines
Highly Diastereoselective Addition of the Lithium
Enolate of r-Diazoacetoacetate to N-Sulfinyl
Imines: Enantioselective Synthesis of 2-Oxo and
3-Oxo Pyrrolidines
Changqing Dong, Fanyang Mo, and Jianbo Wang*
Beijing National Laboratory of Molecular Sciences (BNLMS)
and Key Laboratory of Bioorganic Chemistry and Molecular
Engineering of Ministry of Education, College of Chemistry,
Peking UniVersity, Beijing 100871, China
(3) For recent examples of the synthesis of 2-oxo pyrrolidines through
ring expansions, see: (a) Alcaide, B.; Almendros, P.; Alonso, J. M. J. Org.
Chem. 2004, 69, 993-996. (b) Park, J.-H.; Ha, J.-R.; Oh, S.-J.; Kim, J.-A.;
Shin, D.-S.; Won, T.-J.; Lam, Y.-F.; Ahn, C. Tetrahedron Lett. 2005, 46,
1755-1757. (c) Alcaide, B.; Almendros, P.; Cabrero, G.; Ruiz, M. P. Org.
Lett. 2005, 7, 3981-3984. (d) Van Brabandt, W.; De Kimpe, N. J. Org.
Chem. 2005, 70, 3369-3374. (e) Scott, M. E.; Schwarz, C. A.; Lautens,
M. Org. Lett. 2006, 8, 5521-5524.
ReceiVed October 24, 2007
(4) For examples of [3 + 2] annulations in 2-oxo pyrrolidine synthesis,
see: (a) Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434-
1435. (b) Sun, P.-P.; Chang, M.-Y.; Chiang, M. Y.; Chang, N.-C. Org.
Lett. 2003, 5, 1761-1763. (c) Romero, A.; Woerpel, K. A. Org. Lett. 2006,
8, 2127-2130.
(5) For recent examples of 2-oxo pyrrolidine synthesis by metal carbene
intramolecular C-H insertions, see: (a) Yoon, C. H.; Zaworotko, M. J.;
Moulton, B.; Jung, K. W. Org. Lett. 2001, 3, 3539-3542. (b) Wee, A. G.
H.; Duncan, S. C. Tetrahedron Lett. 2002, 43, 6173-6179. (c) Yoon, C.
H.; Nagle, A.; Chen, C.; Gandhi, D.; Jung, K. W. Org. Lett. 2003, 5, 2259-
2262. (d) Choi, M. K.-W.; Yu, W.-Y.; Che, C.-M. Org. Lett. 2005, 7, 1081-
1084. (e) Wee, A. G. H.; Duncan, S. C.; Fan, G. J. Tetrahedron: Asymmetry
2006, 17, 297-307.
(6) For recent examples of other methods to synthesize 2-oxo pyrro-
lidines, see: (a) Ryu, I.; Matsu, K.; Minakata, S.; Komatsu, M. J. Am. Chem.
Soc. 1998, 120, 5838-5839. (b) Benati, L.; Leardini, R.; Minozzi, M.;
Nanni, D.; Spagnolo, P.; Strazzari, S.; Zanardi, G. Org. Lett. 2002, 4, 3079-
3081. (c) Vergnon, A. L.; Pottorf, R. S.; Winters, M. P.; Player, M. R. J.
Comb. Chem. 2004, 6, 903-910. (d) Hu, T.; Li, C. Org. Lett. 2005, 7,
2035-2038. (e) He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131-3134. (f)
Ramachandran, P. V.; Burghardt, T. E. Chem. Eur. J. 2005, 11, 4387-
4395. (g) Masse, C. E.; Ng, P. Y.; Fukase, Y.; Sanchez-Rosello, M.; Shaw,
J. T. J. Comb. Chem. 2006, 8, 293-296. (h) Gheorghe, A.; Schulte, M.;
Reiser, O. J. Org. Chem. 2006, 71, 2173-2176. (i) Zhou, C.-Y.; Che, C.-
M. J. Am. Chem. Soc. 2007, 129, 5828-5829.
(7) For intramolecular N-H bond insertion in the synthesis of 3-oxo
pyrrolidine derivatives, see: (a) Moyer, M. P.; Feldman, P. L.; Rapoport,
H. J. Org. Chem. 1985, 50, 5223-5230. (b) Clark, J. S.; Hodgson, P. B. J.
Chem. Soc., Chem. Commun. 1994, 2701-2702. (c) Wang, J.; Hou, Y.;
Wu, P. J. Chem. Soc., Perkin Trans. 1 1999, 2277-2280. (d) Yang, H.;
Jurkauskas, V.; Mackintosh, N.; Mogren, T.; Stephenson, C. R. J.; Foster,
K.; Brown, W.; Roberts, E. Can. J. Chem. 2000, 78. 800-808. (e) Davis,
F. A.; Fang, F.; Goswami, R. Org. Lett. 2002, 4, 1599-1602.
(8) Berlin, S.; Ericsson, C.; Engman, L. J. Org. Chem. 2003, 68. 8386-
8396.
(9) For recent examples of enantioselective synthesis of 2-oxo and 3-oxo
pyrrolidines, see: (a) Escalante, J.; Gonza´lez-Tototzin, M. A. Tetrahedron:
Asymmetry 2003, 14, 981-985. (b) Fernandes, R. A.; Yamamoto, Y. J.
Org. Chem. 2004, 69, 3562-3564. (c) Newhouse, B.; Allen, S.; Fauber,
B.; Anderson, A. S.; Eary, C. T.; Hansen, J. D.; Schiro, J.; Gaudino, J. J.;
Laird, E.; Chantry, D.; Eberhardt, C.; Burgess, L. E. Bioorg. Med. Chem.
Lett. 2004, 14, 5537-5542. (d) Forzato, C.; Nitti, G.; Pitacco, E.; Valentin,
S.; Morganti, E.; Rizzato, D.; Spinelli, C.; Dell’Erba, P.; Petrillo, G.; Tavani,
C. Tetrahedron 2004, 60, 11011-11027. (e) Ramachandran, P. V.;
Burghardt, T. E. Chem. Eur. J. 2005, 11, 4387-4395. (f) Park, J.-H.; Ha,
J.-R.; Oh, S.-J.; Kim, J.-A.; Shin, D.-S.; Won, T.-J.; Lam, Y.-F.; Ahn, C.
Tetrahedron Lett. 2005, 46, 1755-1757. (g) Raghavan, B.; Johnson, R. L.
J. Org. Chem. 2006, 71, 2151-2154. (h) Hansen, J. D.; Newhouse, B. J.;
Allen, S.; Anderson, A.; Eary, T.; Schiro, J.; Gaudino, J.; Laird, E.; Allen,
A. C.; Chantry, D.; Eberhardt, C.; Burgess, L. E. Tetrahedron Lett. 2006,
47, 69-72. (i) Davis, F. A.; Xu, H.; Wu, Y.; Zhang, J. Org. Lett. 2006, 8,
2273-2276.
The highly enantioselective synthesis of 2-oxo and 3-oxo
pyrrolidines has been achieved by diastereoselective addition
of the lithium enolate of R-diazoacetoacetate to chiral
N-sulfinyl imines, followed by photoinduced Wolff rear-
rangement or Rh(II)-catalyzed intramolecular N-H insertion.
2-Oxo and 3-oxo pyrrolidines are widespread among natural
products and biologically active molecules.1 Chiral pyrrolidi-
nones are used as excellent building blocks for the synthesis of
a plethora of nitrogen-containing natural products, such as
pyrrolizidines and indolizidines.1a-c Consequently, many meth-
odologies have been developed for their synthesis over the
years.2 The most widely applied ways to synthesize 2-oxo
pyrrolidines include ring expansion of â-lactam derivatives,3
formal [3+2] annulations,4 and metal carbene intramolecular
C-H insertions.5,6 Compared to 2-oxo pyrrolidines, there are
relatively fewer methods for the synthesis of 3-oxo pyrrolidines.
(1) For selected reviews, see: (a) Daly, J. W.; Spande, T. F.; Garraffo,
H. M. J. Nat. Prod. 2005, 68, 1556-1575. (b) O’ Hagan, D. Nat. Prod.
Rep. 2000, 17, 435-442. (c) Leclercq, S.; Braekman, J. C.; Daloze, D.;
Pasteels, J. M. Prog. Chem. Org. Nat. Prod. 2000, 79, 115-229. (d) Corey,
E. J.; Li, W.-D. Z. Chem. Pharm. Bull. 1999, 47, 1-10.
(2) For recent reviews on 2-oxo pyrrolidine syntheses, see: (a) Huang,
P.-Q. In New Methods for the Asymmetric Synthesis of Nitrogen Hetero-
cycles; Research Signpost: Trivandrum, India, 2005; pp 197-222. (b)
Smith, M. B. In Science of Synthesis; Weinreb, S., Ed.; Georg Thieme
Verlag: Stuttgart, Germany, 2005; Vol 21, pp 647-711. (c) Renaud, P.;
Giraud, L. Synthesis 1996, 913-926. (d) Fallis, A. G.; Brinza, I. M.
Tetrahedron 1997, 53, 17543-17594. (e) Ley, S. V.; Cox, L. R.; Meek, G.
Chem. ReV. 1996, 96, 423-442.
10.1021/jo702275a CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/12/2008
J. Org. Chem. 2008, 73, 1971-1974
1971