1618
H. S. Park et al. / Tetrahedron Letters 49 (2008) 1616–1618
O
O
O
O
same cond.
as before
O
NaH/PhCHO
86%
(EtO)2P
(EtO)2P
OEt
O
Ph
O
O
72%
I
I
4
2m
3m
Scheme 1. Attempted synthesis of a-methylene-c-lactone 4.
2. (a) Harchen, C.; Bruckner, R. Angew. Chem., Int. Ed. 1997, 36, 2750;
(b) Drioli, S.; Felluga, F.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin,
E. J. Org. Chem. 1998, 63, 2385; (c) de March, P.; Figueredo, M.;
Font, J.; Raya, J. Org. Lett. 2000, 2, 163; (d) He, M.; Lei, A.; Zhang,
X. Tetrahedron Lett. 2005, 46, 1823; (e) Delhaye, L.; Merschaert, A.;
Diker, K.; Houpis, I. N. Synthesis 2006, 1437.
3. (a) Gutierrez, J. L. G.; Jimenez-Cruz, F.; Espinosa, N. R. Tetrahedron
Lett. 2005, 46, 803; (b) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F.
Synthesis 2006, 2418; (c) Tiecco, M.; Testaferri, L.; Temperini, A.;
Terlizzi, R.; Bagnoli, L.; Marini, F.; Santi, C. Synlett 2006, 587; (d)
Vitale, M.; Prestat, G.; Lopes, D.; Madec, D.; Poli, G. Synlett 2006,
2231; (e) Cho, C. S.; Shim, H. S. Tetrahedron Lett. 2006, 47, 3835; (f)
Dias, L. C.; de Castro, I. B. D.; Steil, L. J.; Augusto, T. Tetrahedron
Lett. 2006, 47, 213. Other important references cited therein.
4. (a) Namy, J.-L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1, 5;
(b) Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980,
102, 2693.
EtO
I
O
O
OSmI2
O
SmI2 (2eq)
2j
Sm
L
L
H
Br
EtO
EtO
O
I
A (SmI2L)
H
H
I
I
O
O
Sm
L
Sm
H
O
H
NH4Cl (aq)
H
O
O
H
H
H
H
H
H
I
I
I
3j
C
B
Fig. 1. Plausible reaction mechanism for c-lactone 3j.
5. (a) Kwon, D. W.; Cho, M. S.; Kim, Y. H. Synlett 2003, 959; (b)
Chung, S. H.; Cho, M. S.; Choi, J. Y.; Kwon, D. W.; Kim, Y. H.
Synlett 2001, 1266; (c) Jung, D. Y.; Kim, Y. H. Synlett 2005, 3019.
6. Epoxy esters 2a–e were prepared in two steps via allylation of
malonates followed by epoxidation with m-CPBA.
IÀ derived from iodosamarium complex A to epoxide 2j,
would deliver an iodohydrin intermediate B which, upon
hydrolysis, afford 3j in complete regio- and diastereoselec-
tive way.
In conclusion, a novel method for generating c-lactones
from epoxy esters using SmI2 as a key reagent has been
developed. Considering several advantages, for example,
easy preparation of starting materials, mild reaction condi-
tions together with good to excellent yields, and further-
more flexibility of this new tandem reaction providing
diverse sets of c-lactones from simple c-lactones to cis-
fused bycyclic/spiro and a-methylene-c-lactones, this new
synthetic route should be a method of choice in the synthe-
sis of various c-lactone derivatives.
7. Typical synthetic procedure for c-lactones: To a precooled (À78 °C)
solution of 2a (0.50 mmol), ethyl bromoacetate (1 equiv) and HMPA
(6 equiv) in dry THF (2 mL) was added SmI2 (2 equiv, 0.1 M solution
in THF), and the resulting mixture was stirred at À78 °C for 2 h under
Ar. The reaction was quenched by aqueous NH4Cl solution, and the
organic layer was separated. The aqueous layer was extracted with
Et2O (10 mL Â 3), and the combined organic layers were washed with
brine, dried over MgSO4, filtered and concentrated. The residue was
purified by flash column chromatography on SiO2 using (EtOAc/
hexane, 1/3) as an eluent affording pure 3a. 1H NMR (CDCl3,
400 MHz) d 1.22–1.32 (m, 3H), 2.19–2.46 (m, 1H), 2.67–2.80 (m, 1H),
3.26–3.71 (m, 3H), 4.19–4.28 (m, 2H), 4.54–4.69 (m, 1H); 13C NMR
(CDCl3, 100 MHz) d 5.7, 7.6, 14.5, 32.7, 47.5, 47.9, 62.8, 62.9, 77.9,
78.1, 167.8, 171.3; HRMS(EI) calcd for C8H11IO4: 297.9702; found:
297.9713.
Acknowledgment
8. (a) Shiu, L.-H.; Li, Y.-L.; Lao, C.-Y.; Chen, W.-C.; Yu, C.-H.; Liu,
R.-S. J. Org. Chem. 1999, 64, 7552; (b) Velazquez, F.; Olivo, H. F.
Org. Lett. 2000, 2, 1931; (c) Bergner, E. J.; Helmchen, G. J. Org.
Chem. 2000, 65, 5072; (d) Zanoni, G.; Porta, A.; Meriggi, A.;
Franzini, M.; Vidari, G. J. Org. Chem. 2002, 67, 6064; (e) Ginn, J.;
Padwa, A. Org. Lett. 2002, 4, 1515.
This work was supported by Center for Molecular
Design and Synthesis of Korea Science and Engineering
foundation.
9. (a) Trost, B. M.; Balkove, J. M.; Mao, M. K.-T. J. Am. Chem. Soc.
1983, 105, 6755; (b) Peterson, E. M.; Xu, K.; Holland, K. D.; Mckeon,
A. C.; Rothman, S. M.; Ferrendelli, J. A.; Covey, D. F. J. Med. Chem.
1994, 37, 275; (c) Silva, L. F. J. Synthesis 2001, 671; (d) Vyvyan, J. R.;
Rubens, C. A.; Halfen, J. A. Tetrahedron Lett. 2002, 43, 221.
10. (a) Kupchan, S. M.; Fessler, D. C.; Eakin, M. A.; Giacobbe, T. J.
Science 1970, 168, 376; (b) Iio, H.; Isobe, M.; Kawai, T.; Goto, T. J.
Am. Chem. Soc. 1979, 101, 6067; (c) Bartel, S.; Bohlmann, F.
Tetrahedron Lett. 1989, 30, 685; (d) Gonzalez, A. G.; Hernandez, S.;
Margarita, P.; Juan, I.; Leon, F.; Reyes, E.; Alvarez-Mon, M.; Pivel, J.
P.; Quintana, J.; Estevez, F.; Bermejo, J. J. Med. Chem. 2002, 45, 2358.
References and notes
1. (a) Koch, S. S. C.; Chamberlin, A. R. In Studies in Natural Products
Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 1995; Vol.
16, pp 687–725; (b) Rao, Y. S. Chem. Rev. 1976, 76, 625; (c)
Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24,
94; (d) Mulzer, J.; Salimi, N.; Hartl, H. Tetrahedron: Asymmetry
1993, 4, 457; (e) Schmitz, W. D.; Messerschmidt, N. B.; Romo, D. J.
Org. Chem. 1998, 63, 2058; (f) Maier, M. S.; Marimon, D. I. G.;
Stortz, C. A.; Adler, M. J. J. Nat. Prod. 1999, 62, 1565.