1468
A. Kamal et al. / Tetrahedron Letters 49 (2008) 1465–1468
P. B. Curr. Opin. Struct. Biol. 1997, 7, 355–361; (g) Gottesfeld, J. M.;
evaporated under vacuum to give 3a (Scheme 1) in good yield.
Compounds 3a–l and 8a–c were synthesized in the same manner.
Neely, L.; Trauger, J. W.; Baird, E. E.; Dervan, P. B. Nature 1997,
387, 202–205; (h) Szewczyk, J. W.; Baird, E. E.; Dervan, P. B. Angew.
Chem., Int. Ed. 1996, 35, 1487–1489.
1
Compound 3a (FT-IR): cmꢁ1 2128; 1636; 1486; 1449; 1420; 1296; H
NMR (300 MHz, CDCl3): d 7.35–7.45 (m, 2H); 7.11–7.21 (m, 2H);
5.03–5.10 (m, 1H); 3.91 (s, 3H); 3.40–3.50 (m, 1H); 3.30–3.39 (m, 1H);
3.25 (s, 3H); 2.22–2.34 (m, 1H); 1.82–2.12 (m, 3H); ESI-MS: m/z 326
(M++Na); HRMS calcd for C14H17N5O3 (M+) 303.1949, found
303.1919. Compound 3e: (FT-IR): cmꢁ1 2963; 2125; 1670; 1636; 1578;
1456; 1423; 1385; 1310; 1265; 1H NMR (300 MHz, CDCl3): d 7.30–
7.42 (m, 5H); 7.06 (t, 1H, J = 7.55 Hz); 6.90–6.94 (m, 2H); 5.15 (s,
2H); 5.03–5.07 (m, 1H); 3.90 (s, 3H); 3.31–3.44 (m, 2H); 3.24 (s, 3H);
2.24–2.31 (m, 1H); 1.84–2.09 (m, 3H); LC-MSD: m/z 432 (M++Na);
HRMS calcd for C21H23N5O4 (M+) 409.2739, found 409.2742.
Compound 8a: (FT-IR): cmꢁ1 2114; 1631; 1514; 1460; 1430; 1385;
1248; 1210; 1H NMR (300 MHz, CDCl3): d 6.88 (s, 2H); 6.69 (s, 2H);
5.05–5.09 (m, 2H); 4.21–4.28 (m, 4H); 3.88 (s, 6H); 3.83 (s, 6H); 3.36–
3.50 (m, 4H); 3.25 (s, 6H); 2.24–2.44 (m, 4H); 1.83–2.10 (m, 4H); 1.68–
1.73 (m, 2H); ESI-MS: m/z 739 (M++H); 761 (M++Na); HRMS
calcd for C33H42N10O10 (M+) 738.4472, found 738.4450.
2. (a) Thurston, D. E. In Molecular Aspects of Anticancer Drug–DNA
Interactions; Neidle, S., Waring, M. J., Eds.; Macmillan Press Ltd:
Basingstoke, Hants, UK, 1993; Vol. 1, pp 54–88; (b) Remers, W. A. In
The Chemistry of Antitumor Antibiotics; Wiley-Interscience: New
York, 1988; Vol. 2; pp 28–92; (c) Hurley, L. H.; Thurston, D. E.
Pharm. Res. 1984, 2, 52–59.
3. Thurston, D. E.; Bose, D. S. Chem. Rev. 1994, 94, 433–465.
4. Bose, D. S.; Thompson, A. S.; Ching, J. S.; Hartley, J. A.; Berardini,
M. D.; Jenkins, T. C.; Neidle, S.; Hurley, L. H.; Thurston, D. E. J.
Am. Chem. Soc. 1992, 114, 4939–4941.
5. Thurston, D. E.; Bose, D. S.; Thompson, A. S.; Howard, P. W.;
Leoni, A.; Croker, S. J.; Jenkins, T. C.; Neidle, S.; Hartley, J. A.;
Hurley, L. H. J. Org. Chem. 1996, 61, 8141–8147.
6. (a) Bose, D. S.; Thompson, A. S.; Ching, J. A.; Hartley, J. A.;
Berardini, M. D.; Jenkins, T. C.; Neidle, S.; Hurley, L. H.; Thurston,
D. E. J. Am. Chem. Soc. 1992, 114, 4939–4941; (b) Bose, D. S.;
Thompson, A. S.; Smellie, M.; Berardini, M. D.; Hartley, J. A.;
Jenkins, T. C.; Neidle, S.; Thurston, D. E. J. Chem. Soc., Chem.
Commun. 1992, 1518–1520.
7. (a) Gregson, S. J.; Howard, P. W.; Hartley, J. A.; Brooks, A. A.;
Adams, L. J.; Jenkins, T. C.; Kelland, L. R.; Thurston, D. E. J. Med.
Chem. 2001, 44, 737–748; (b) Gregson, S. J.; Howard, P. W.; Gullick,
D. R.; Hamaguchi, A.; Corcoran, K. E.; Brooks, N. A.; Hartley, J.
A.; Jenkins, T. C.; Patel, S.; Guille, M. J.; Thurston, D. E. J. Med.
Chem. 2004, 47, 1161–1174.
8. (a) Kamal, A.; Reddy, K. L.; Devaiah, V.; Shankaraiah, N. Synlett
2004, 2533–2536; (b) Kamal, A.; Devaiah, V.; Reddy, K. L.;
Shankaraiah, N. Adv. Synth. Catal. 2006, 348, 249–254.
9. (a) Kamal, A.; Reddy, K. L.; Devaiah, V.; Shankaraiah, N.; Reddy,
D. R. S. Mini-Rev. Med. Chem. 2006, 6, 53–68; (b) Kamal, A.; Reddy,
K. L.; Devaiah, V.; Shankaraiah, N.; Reddy, G. S. K.; Raghavan, S.
J. Comb. Chem. 2007, 9, 29–42; (c) Kamal, A.; Shankaraiah, N.;
Devaiah, V.; Reddy, K. L. Tetrahedron Lett. 2006, 47, 6553–6556; (d)
Kamal, A.; Shankaraiah, N.; Reddy, K. L.; Devaiah, V. Tetrahedron
Lett. 2006, 47, 4253–4257; (e) Kamal, A.; Reddy, K. L.; Devaiah, V.;
Shankaraiah, N. Synlett 2004, 1841–1843.
10. Kamal, A.; Rao, M. V.; Reddy, B. S. N. Khim. Geterotsikl. (Chem.
Heterocycl. Compd.) 1998, 1588–1604.
11. Kamal, A.; Rao, M. V.; Laxman, N.; Ramesh, G.; Reddy, G. S. K.
Curr. Med. Chem.—Anti-Cancer Agents 2002, 2, 215–254.
12. Kaneko, T.; Wong, H.; Doyle, T. W.; Rose, W. C.; Bradner, W. T. J.
Med. Chem. 1985, 28, 388–392.
13. (a) Langley, D. R.; Thurston, D. E. J. Org. Chem. 1987, 52, 91–97; (b)
Courtney, S. M.; Thurston, D. E. Tetrahedron Lett. 1993, 34, 5327–
5328; (c) Bose, D. S.; Jones, G. B.; Thurston, D. E. Tetrahedron 1992,
48, 751–758.
14. Kamal, A.; Reddy, P. S. M. M.; Reddy, D. R. Tetrahedron Lett. 2003,
44, 2857–2860.
15. (a) Kamal, A.; Ramana, A. V.; Reddy, K. S.; Ramana, K. V.; Babu,
A. H.; Prasad, B. R. Tetrahedron Lett. 2004, 45, 8187–8190; (b)
Kamal, A.; Reddy, K. S.; Prasad, B. R.; Babu, A. H.; Ramana, A. V.
Tetrahedron Lett. 2004, 45, 6517–6521.
16. Budyka, M. F.; Biktimirova, N. V.; Gavrishova, T. N. Chem.
Heterocycl. Compd. 2007, 43, 454–459.
17. Typical procedure for the synthesis of compound 3a: The azidobenzoyl
proline acid (2a, 276 mg, 1 mmol) was dissolved in anhydrous CH2Cl2
(10 mL) and cooled to ꢁ15 °C followed by the addition of N,O-
dimethylhydroxylamine hydrochloride (107 mg, 1.1 mmol) and
NMM (0.08 mL, 1.1 mmol). Then EDCI (210 mg, 1.1 mmol) was
added portionwise as a solid over 30 min. The reaction mixture was
stirred at the same temperature for 1 h and then ice-cold HCl (1 M,
5 mL) was added. The reaction mixture was extracted with CH2Cl2
(3 ꢂ 30 mL), the combined organic layer was washed with aqueous
NaHCO3 (3 ꢂ 30 mL) solution, dried over anhydrous Na2SO4, and
18. Typical procedure (LiAlH4) for compound 4a: To azide 3a (200 mg,
0.66 mmol) in dry THF (15 mL) was added LiAlH4 (52 mg,
1.45 mmol) portionwise over 5 min at ꢁ15 to ꢁ20 °C and the reaction
stirred at the same temperature for 40 min. This was then quenched
with ethyl acetate, then ice-cold water was added and the reaction
mixture filtered through a sintered funnel. The combined layers were
extracted with ethyl acetate (3 ꢂ 30 mL), the organic layers dried over
anhydrous Na2SO4 and evaporated under vacuum to give product 4a.
This was purified by column chromatography (silica gel 100–200
mesh) using ethyl acetate/hexane (9:1) as eluent. Procedure for LiBH4:
Compound 3a (200 mg, 0.66 mmol) in dry THF (15 mL) was treated
with LiBH4 (42 mg, 2.00 mmol) at 0 °C and the reaction stirred at
room temperature for 130 min. Quenching with ice-cold water,
filtration through a sintered funnel, extraction with ethyl acetate
(3 ꢂ 30 mL), and purification by column chromatography gave 4a.
Both procedures were also applied for the preparation of PBD dimers
by utilizing varying amounts (2 equiv) of pyrrolobenzodiazepine
followed by purification by column chromatography (silica gel 100–
200 mesh) using CHCl3/MeOH (95:5) as eluent to produce 9a–c as
shown in Scheme 2. Compound 4a: 1H NMR (200 MHz, CDCl3): d
8.05 (d, 1H, J = 7.43 Hz); 7.79 (d, 1H, J = 4.46 Hz); 7.53 (t, 1H,
J = 6.69 Hz); 7.28–7.38 (m, 2H); 3.36–3.94 (m, 3H); 2.26–2.38, (m,
26
2H); 2.02–2.16 (m, 2H); MS (EI): m/z 200 [M+]; ½aꢃD +343 (c 0.4,
CHCl3); HRMS calcd for C12H12N2O (M+) 200.1506, found
200.1513. Compound 4e: 1H NMR (200 MHz, CDCl3): d 7.64 (d,
1H, J = 6.68 Hz); 7.28–7.38 (m, 6H); 6.89–7.03 (m, 2H); 5.03–5.15 (m,
2H); 3.67–3.95 (m, 2H); 2.54–2.62 (m, 1H); 1.61–2.13 (m, 3H); LC-
26
MSD: m/z 337 (m+CH3O)+; ½aꢃD +298 (c 0.4, CHCl3); HRMS calcd
for C19H18N2O2 (M+) 306.2297, found 306.2301. Compound 9a: 1H
NMR (200 MHz, CDCl3): d 7.57 (d, 2H, J = 2.34 Hz); 7.50 (s, 2H);
7.10 (s, 2H); 4.16–4.35 (m, 4H) 3.96 (s, 6H); 3.40–3.87 (m, 6H); 2.05–
2.48 (m, 10H); 13C NMR (50 MHz, CDCl3): d 24.8, 28.6; 29.0; 31.8;
33.9; 46.5; 56.1; 65.3; 105.5; 108.0; 113.5; 148.1; 158.1; 160.3; 177.0;
FABMS: m/z 533 (M++H); HRMS calcd for C29H32N4O6 (M+)
532.3587, found 532.3522. Compound 9b: 1H NMR (200 MHz,
CDCl3): d 7.68 (d, 2H, J = 4.68 Hz); 7.50 (s, 2H); 6.82 (s, 2H); 4.10–
4.20 (m, 4H) 3.93 (s, 6H); 3.51–3.84 (m, 4H); 2.27–2.38 (m, 4H); 2.06–
2.10 (m, 10H); 13C NMR (50 MHz, CDCl3): d 164.6; 162.4; 150.6;
147.8; 140.6; 120.3; 111.6; 110.7; 65.4; 56.1; 53.7; 46.7; 29.6; 25.7; 24.2;
FABMS: m/z 547 (M++H); HRMS calcd for C30H34N4O6 (M+)
546.3710, found 546.3737. Compound 9c: 1H NMR (200 MHz,
CDCl3): d 7.67 (d, 2H, J = 4.68 Hz); 7.50 (s, 2H); 6.80 (s, 2H); 4.04–
4.23 (m, 4H) 3.93 (s, 6H); 3.44–3.84 (m, 6H); 2.27–2.37 (m, 4H); 1.92–
2.11 (m, 8H); 1.66 (m, 2H); 13C NMR (50 MHz, CDCl3): d 164.7;
162.4; 150.8; 147.8; 140.6; 120.1; 111.5; 110.4; 68.5; 56.2; 53.7; 46.7;
29.7; 28.6; 24.2; 22.5; FABMS: m/z 561 (M++H); HRMS calcd for
C31H36N4O6 (M+) 560.3833, found 560.3812.
19. Kamal, A.; Shankaraiah, N.; Devaiah, V.; Reddy, K. L. Tetrahedron
Lett. 2006, 47, 9025–9028.