M. Ishida et al. / Tetrahedron Letters 49 (2008) 1804–1807
1807
Chem. Soc. 1969, 91, 6129–6138; (h) Williamson, K. L.; Hsu, Y.-F. L.
J. Am. Chem. Soc. 1970, 92, 7385–7389.
the CH@CH protons at d 6.41. No NOE was observed between the
methyl protons at d 1.24 and the methyne protons at d 3.49–3.51. 13
C
4. (a) Anh, N. T. Tetrahedron 1973, 29, 3227–3232; (b) Kahn, S. D.;
Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 663–666.
5. There have been some arguments against the proposal: (a) Ishida, M.;
Aoyama, T.; Beniya, Y.; Yamabe, S.; Kato, S.; Inagaki, S. Bull.
Chem. Soc. Jpn. 1993, 66, 3430–3439; (b) Werstiuk, N. H.; Ma, J.
Can. J. Chem. 1994, 72, 2493–2505.
NMR (100 MHz, CDCl3) d 23.4, 46.5, 52.4, 72.1, 125.3, 127.0, 129.3,
134.6, 144.4, 171.6; HRMS calcd for C16H14O3 254.0943; found
254.0946.
15. Following the suggestion made by one reviewer, the transition states
for the reaction between diene 2 and maleic anhydride were calculated
at the RHF/6-31G* level. The results were confirmed by IRC
calculations at the same level. The syn attack transition states
TSsyn-endo and TSsyn-exo are Cs-symmetric. The phenyl moieties of syn
attack transition states are in horizontal conformation similar to
1h. The anti attack transition states TSanti-endo and TSanti-exo are
C1-symmetric. Relative energies of TSsyn-endo, TSsyn-exo, TSanti-endo, and
TSanti-exo were 0.0, 9.3, 4.2, and 14.4 kcal/mol, respectively. These
results are well consistent with the observation.
6. Inagaki, S.; Fujimoto, H.; Fukui, K. J. Am. Chem. Soc. 1976, 98,
4054–4061.
7. (a) Ishida, M.; Aoyama, T.; Kato, S. Chem. Lett. 1989, 663–666; (b)
Ishida, M.; Beniya, Y.; Inagaki, S.; Kato, S. J. Am. Chem. Soc. 1990,
112, 8980–8982; (c) Ishida, M.; Kakita, S.; Inagaki, S. Chem. Lett.
1995, 469–470; (d) Ishida, M.; Tomohiro, S.; Shimizu, M.; Inagaki, S.
Chem. Lett. 1995, 739–740; (e) Ishida, M.; Kobayashi, H.; Tomohiro,
S.; Wasada, H.; Inagaki, S. Chem. Lett. 1998, 41–42; (f) Ishida, M.;
Kobayashi, H.; Tomohiro, S.; Inagaki, S. J. Chem. Soc., Perkin
Trans. 2 2000, 1625–1630; (g) Ishida, M.; Sakamoto, M.; Hattori, H.;
Shimizu, M.; Inagaki, S. Tetrahedron Lett. 2001, 42, 3471–3474; (h)
Ishida, M.; Hirasawa, S.; Inagaki, S. Tetrahedron Lett. 2003, 44,
2187–2190.
8. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels,
A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone,
V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.;
Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.;
Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts,
R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C.
Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A. GAUSSIAN 98, Revision A.9, Gaussian:
Pittsburgh, PA, 1998.
TSsyn-endo
TSsyn-exo
9. Wasada, H.; Tsutsui, Y. Bull. Fac. Gen. Edu., Gifu Univ. 1996, 33,
145–158.
10. Lack of distortion is probably due to lack of contribution of the p-
component of the r-system of the diene framework to the orbital
mixing. The overlap between pPh-HOMO(A) and the p-component of the
r-system is much less effective than that between pPh-HOMO(A) and the
s-component in 1h.
11. Preparation of 5-methyl-5-phenylcyclopentadiene 2 by other proce-
dures was reported: Eilbracht, P.; Dahler, P. Liebigs Ann. Chem. 1979,
1890–1907.
12. Diels–Alder reactions of 5,5-diarylcyclopentadienes: 5-Aryl-5-phenyl-
cyclopentadienes: (a) Halterman, R. L.; McCarthy, B. A.; McEvoy,
M. A. J. Org. Chem. 1992, 57, 5585–5589; Cyclopentadienes bearing a
benzofluorene in spiro geometry: (b) Tsuji, M.; Ohwada, T.; Shudo,
K. Tetrahedron Lett. 1998, 39, 403–406; Cyclopentadienes bearing a
fluorene in spiro geometry: (c) Igarashi, H.; Sakamoto, S.; Yama-
guchi, K.; Ohwada, T. Tetrahedron Lett. 2001, 42, 5257–5260.
13. Jenkins, T. J.; Burnell, D. J. J. Org. Chem. 1994, 59, 1485–
1491.
TSanti-endo
TSanti-exo
16. Adam, W.; Jacob, U.; Prein, M. J. Chem. Soc., Chem. Commun. 1995,
839–840.
17. p–p Interaction between a dienophile and the phenyl moiety of diene 2
was suggested as a possible explanation for the observed selectivity by
one reviewer. This explanation seemed to be less likely since the
interaction destabilizes syn attack transition states due to the out of
phase relationship between pꢂdienophile and pPh-HOMO(A). The interac-
tion can be the origin of the selectivity of 5-aryl-5-phenylcyclopent-
adiene to favor the reactions on the anti side of more electron rich
aromatic system.12a The selectivity is consistꢂent with the approach of
0
reactants to avoid the interaction between pdienophile and pPh-HOMOðAÞ
of more electron rich aromatic system.
dienophile
dienophile
14. Selected spectroscopic data: Compound 3a: mp 181.3–182.6 °C
(colorless solid from hexane–AcOEt). 1H NMR (400 MHz, CDCl3)
d 1.26 (s, 3H, Me), 3.37–3.39 (m, 2H, CH), 3.74 (s, 2H, CH), 6.36 (t,
J = 2.0 Hz, 2H, CH@CH), 7.08–7.48 (m, 10H, Ph). Compound 3a
displayed 3.3% of NOE between the methyl protons at d 1.26 and the
CH@CH protons at d 6.36. No NOE was observed between the
Ph-HOMO(A)
Ph-HOMO(A)
(-)
methyl protons at d 1.26 and the methyne protons at d 3.37–3.39. 13
C
NMR (100 MHz, CDCl3) d 23.7, 45.1, 51.9, 71.3, 125.6, 126.6, 126.8,
128.6, 129.1, 131.8, 133.6, 145.0, 177.1; HRMS calcd for C22H19NO2
329.1416; found 329.1407. Compound 3b: mp 134.6–135.6 °C
(colorless solid from hexane–AcOEt). 1H NMR (400 MHz, CDCl3)
d 1.24 (s, 3H, Me), 3.49–3.51 (m, 2H, CH), 3.72 (s, 2H, CH), 6.41 (t,
J = 2.0 Hz, 2H, CH), 7.20–7.39 (m, 5H, Ph). Compound 3b
displayed 4.7% of NOE between the methyl protons at d 1.24 and
HOMO
HOMO
Ph-HOMO(A)'
More electron rich
aromatic system
Ph
Ph Ar