Published on Web 10/28/2004
Sterically Demanding, Bioxazoline-Derived N-Heterocyclic
Carbene Ligands with Restricted Flexibility for Catalysis
Gereon Altenhoff, Richard Goddard, Christian W. Lehmann, and Frank Glorius*
Contribution from the Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1,
45470 Mu¨lheim an der Ruhr, Germany
Received August 2, 2004; E-mail: glorius@mpi-muelheim.mpg.de
Abstract: A unique family of N-heterocyclic carbenes derived from bioxazolines (IBiox) suitable for
application in transition-metal catalysis is described. The ligands are electron rich, sterically demanding,
and have restricted flexibility. Their usefulness has been demonstrated in the Suzuki-Miyaura cross-coupling
of sterically hindered aryl chlorides and boronic acids. For the first time, tetraortho-substituted biaryls with
methyl and larger ortho-substituents have been synthesized from aryl chlorides using the Suzuki-Miyaura
method.
Introduction
cross-couplings was not feasible. Instead, more costly and less
readily available aryliodides and arylbromides had to be used.
The Suzuki-Miyaura cross-coupling reaction has become an
attractive standard process for biaryl formation.1 Its popularity
results from the wide functional group tolerance, as well as the
low toxicity and robustness of the reagents involved. Many
catalyst systems have been developed to increase the scope of
this important transformation and allow the reaction to proceed
under milder conditions.1-10 For a long time, the use of
unactivated aryl chlorides as substrates in Suzuki-Miyaura
Buchwald4 and Fu5 were the first to independently develop
catalyst systems based on electron-rich, sterically demanding
phosphine ligands, which allow the Suzuki-Miyaura cross-
coupling of many unactivated aryl chlorides. The application
of N-heterocyclic carbene (NHC)11 ligands in the reaction was
first reported by Herrmann in 1998.7 Subsequently, palladium
complexes of many N-heterocyclic carbene (NHC)11 ligands
were found to be competent catalysts for the Suzuki-Miyaura
coupling of unactivated aryl chlorides,7-10 with sterically
demanding ligands, such as IMes or IAd, being especially useful.
Ortho-substituted biaryls are important substructures of
biologically active compounds and organic functional materials.1
Unfortunately, the linking of sterically hindered carbon centers
is notoriously difficult and the formation of multi-ortho-
substituted biaryls under mild conditions has remained elusive.12
Recently, we described the IBiox6 ligand, a bioxazoline-derived
NHC, which contains a tricyclic, rigid backbone as the key
structural element and substituents next to the nitrogen atoms
(1) (a) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem.
ReV. 2002, 102, 1359. (b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron
2002, 58, 9633. (c) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(d) Suzuki, A. J. Organomet. Chem. 1999, 576, 147. (e) Miyaura, N. Top.
Curr. Chem. 2002, 219, 11.
(2) For a review on Pd-catalyzed cross-coupling reactions of aryl chlorides,
see: Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176.
(3) For a survey of the rational design of catalysts for the Suzuki-Miyaura
coupling, see: Miura, M. Angew. Chem., Int. Ed. 2004, 43, 2201.
(4) For the use of unactivated aryl chlorides, see: (a) Old, D. W.; Wolfe, J.
P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. (b) Wolfe, J. P.;
Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413. (c) Wolfe, J. P.;
Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121,
9550. (d) Walker, S. D.; Barder, T. E.; Martinelli, J. R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2004, 116, 1907. For the use of aryl tosylates, see:
(e) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2003,
125, 11818. For the use of aryl bromides in the asymmetric synthesis of
axially chiral biaryls, see: (f) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc.
2000, 122, 12051. For the use of aryl bromides in the synthesis of tetraortho-
substituted biaryls, see: (g) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald,
S. L. J. Am. Chem. Soc. 2002, 124, 1162.
(5) For the use of unactivated aryl chlorides in biaryl formations, see: (a) Littke,
A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387. (b) Littke, A. F.;
Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020. (c) Liu, S.-Y.;
Choi, M. J.; Fu, G. C. Chem. Commun. 2001, 2408.
(6) For other catalysts based on phosphine ligands, see, for example: (a) Shen,
W. Tetrahedron Lett. 1997, 38, 5575. (b) Bei, X.; Turner, H. W.; Weinberg,
W. H.; Guram, A. S.; Petersen, J. L. J. Org. Chem. 1999, 64, 6797. (c)
Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000, 39, 4153.
(d) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem., Int.
Ed. 2002, 41, 4120. (e) Stambuli, J. P.; Kuwano, R.; Hartwig, J. F. Angew.
Chem., Int. Ed. 2002, 41, 4746.
(8) (a) Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999,
64, 3804. (b) Grasa, G. A.; Viciu, M. S.; Huang, J.; Zhang, C.; Trudell, M.
L.; Nolan, S. P. Organometallics 2002, 21, 2866. (c) Hillier, G. A.; Grasa,
G. A.; Viciu, M. S.; Lee, H. M.; Yang, C.; Nolan, S. P. J. Organomet.
Chem. 2002, 653, 69. (d) Viciu, M. S.; Kelly, R. A., III; Stevens, E. D.;
Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003, 5, 1479. (e) Navarro,
O.; Kelly, R. A., III; Nolan, S. P. J. Am. Chem. Soc. 2003, 125, 16194.
(9) Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem.,
Int. Ed. 2003, 42, 3690.
(10) For other catalysts based on NHC ligands, see, for example: (a) Zhang,
C.; Trudell, M. L. Tetrahedron Lett. 2000, 41, 595. (b) Fu¨rstner, A.; Leitner,
A. Synlett 2001, 290. (c) Magill, A. M.; McGuinness, D. S.; Cavell, K. J.;
Britovsek, G. J. P.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; White,
A. H.; Skelton, B. W. J. Organomet. Chem. 2001, 617, 546. (d) Zhao, Y.;
Zhou, Y.; Ma, D.; Liu, J.; Li, L.; Zhang, T. Y.; Zhang, H. Org. Biomol.
Chem. 2003, 1, 1643. (e) Wang, A.-E.; Zhong, J.; Xie, J.-H.; Li, K.; Zhou,
Q.-L. AdV. Synth. Catal. 2004, 346, 595.
(7) (a) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem.
1998, 557, 93. (b) Weskamp, T.; Bo¨hm, V. P. W.; Herrmann, W. A. J.
Organomet. Chem. 1999, 585, 348. (c) Bo¨hm, V. P. W.; Gsto¨ttmayr, C.
W. K.; Weskamp, T.; Herrmann, W. A. J. Organomet. Chem. 2000, 595,
186. (d) Herrmann, W. A.; Bo¨hm, V. P. W.; Gsto¨ttmayr, C. W. K.; Grosche,
M.; Reisinger, C.-P.; Weskamp, T. J. Organomet. Chem. 2001, 617, 616.
(e) Gsto¨ttmayr, C. W. K.; Bo¨hm, V. P. W.; Herdtweck, E.; Grosche, M.;
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1363.
(11) For excellent reviews on the use of NHC ligands in catalysis, see: (a)
Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1291. (b) Herrmann,
W. A.; Ko¨cher, C. Angew. Chem., Int. Ed. Engl. 1997, 36, 2162. See also:
(c) Arduengo, A. J., III; Krafczyk, R. Chem. Unserer Zeit 1998, 32, 6. (d)
Bourissou, D.; Guerret, O.; Gabba¨ı, F. P.; Bertrand, G. Chem. ReV. 2000,
100, 39.
(12) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F., de Meijere, A.,
Eds.; John Wiley & Sons: New York, 2004.
9
10.1021/ja045349r CCC: $27.50 © 2004 American Chemical Society
J. AM. CHEM. SOC. 2004, 126, 15195-15201
15195