T. A. Blizzard et al. / Bioorg. Med. Chem. Lett. 20 (2010) 918–921
2. Livermore, D. M. Antimicrob. Agents. Chemother. 1992, 36, 2046.
921
Table 2
3. Jacoby, G. A.; Munoz-Price, L. S. N. Eng. J. Med. 2005, 352, 380.
4. Livermore, D. M. Clin. Microbiol. Rev. 1995, 8, 557.
5. (a) Coleman, K. Drug Discovery Today: Ther. Strat. 2006, 3, 183; (b) Buynak, J. D.
Biochem. Pharmacol. 2006, 71, 930; (c) Perez-Llarena, F. J.; Bou, G. Curr. Med.
Chem. 2009, 16, 3740; (d) Shahid, M.; Sobia, F.; Singh, A.; Malik, A.; Khan, H. M.;
Jonas, D.; Hawkey, P. M. Crit. Rev. Microbiol. 2009, 35, 81.
Synthesis of analogs 10–14
Amine
29; 30a,b; 31a,b
i - iii
Product
10 - 14
Amine
Product
Yielda
6. (a) Silver, L. L. Expert Opin. Ther. Patents 2007, 17, 1175; (b) Heinze-Krauss, I.;
Angehrn, P.; Charnas, R. L.; Gubernator, K.; Gutknecht, E.-M.; Hubschwerlen, C.;
Kania, M.; Oefner, C.; Page, M. G. P.; Sogabe, S.; Specklin, J.-L.; Winkler, F. J. Med.
Chem. 1998, 41, 3961; (c) Hubschwerlen, C.; Angehrn, P.; Gubernator, K.; Page,
M. G. P.; Specklin, J.-L. J. Med. Chem. 1998, 41, 3972; (d) Bonnefoy, A.; Dupuis-
Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, M.;
Guitton, M.; Lampilas, M. J. Antimicrob. Chemother. 2004, 54, 410; (e) Morandi,
F.; Caselli, E.; Morandi, S.; Focia, P. J.; Blasquez, J.; Shoichet, B. K. J. Am. Chem.
Soc. 2003, 125, 685; (f) Morandi, S.; Morandi, F.; Caselli, E.; Shoichet, B. K.; Prati,
F. Bioorg. Med. Chem. 2008, 16, 1195; (g) Weiss, W. J.; Petersen, P. J.; Murphy, T.
M.; Tardio, L.; Yang, Y.; Bradford, P. A.; Venkatesan, A. M.; Abe, T.; Isoda, T.;
Mihira, A.; Ushirogochi, H.; Takasake, T.; Projan, S.; O’Connell, J.; Mansour, T. S.
Antimicrob. Agents Chemother. 2004, 54, 410; (h) Paukner, S.; Hesse, L.; Prezelj,
A.; Solmajer, T.; Urleb, U. Antimicrob. Agents Chemother. 2009, 53, 505.
7. (a) Besterman, J.M.; Delorme, D.l; Rahil, J. WO 2001002411; (b) DiNinno, F.;
Hammond, M.L.; Dykstra, K.; Kim, S.; Tan, Q.; Young, K.; Hermes, J.D.; Raeppel,
S.; Mannion, M.; Zhou, N.Z.; Gaudette, F.; Vaisburg, A.; Rahil, J.;
Georgopapadakou, N. WO 2007139729; (c) Martell, L. A.; Rahil, G.; Vaisburg,
A.; Young, K.; Hickey, E.; Hermes, J.; DiNinno, F.; Besterman, J. M. Abstract of
Papers, 49th ICAAC, San Francisco, CA; American Society for Microbiology:
Washington, DC, 2009; Abstract C1-1373.
CBZ
O
O
O
N
HN
N
NH2
NH2
N
H
8
H
H
29
N
O
SO3H
10
CBZ
CBZ
N
N
HN
N
N
H
24
11
10
5
H
H
H
30a
N
(isomer A)
O
SO3H
11
NH2
HN
HN
N
N
H
H
30b
31a
N
(isomer B)
O
SO3H
12
9. An improved synthesis of 18 was developed by Merck Process Research and
will be published separately.
10. X-ray coordinates for 2 (PDB code 2wzx) and 3 (2wzz) have been deposited in
the RCSB Protein Data Bank (PDB) database.
O
CBZ
CBZ
N
N
N
NH2
N
H
H
N
H
11. (a) Blizzard, T.A.; Chen, H.Y.; Wu, J.Y.; Kim, S.; Ha, S.; Mortko, C.; Variankaval,
N.; Chiu, A. WO 2008039420. Detailed experimental procedures for the
enzyme inhibition assay and the in vitro synergy assay are provided in
Example 32 of this patent. For convenience, brief summaries of the protocols
for these assays are provided below; (b) Enzyme inhibition assay: Hydrolysis of
the commercially available substrate nitrocefin by AmpC in the presence of the
BLI was measured in a spectrophotometric assay. The enzyme AmpC (from P.
aeruginosa) and the substrate were dissolved in 100 mM KH2PO4 buffer (pH 7)
containing 0.005% BSA. The BLI was dissolved in DMSO and serially diluted in a
96-well microplate. The BLI and AmpC were incubated for 40 min at room
temperature then the substrate solution was added and the incubation
continued for another 40 min. The spectrophotometric reaction was
quenched by the addition of 2.5 N acetic acid and the absorbance at 492 nm
was measured. The IC50 was determined from semi-logarithmic plots of
enzyme inhibition versus inhibitor concentration; (c) In vitro synergy assay:
The assay determines the concentration of BLI required to reduce the MIC of
imipenem by one-half, one-quarter, one-eighth, one-sixteenth and one-thirty-
second against resistant bacteria. The BLI was titrated in a serial dilution across
a microtiter plate while at the same time imipenem was titrated in a serial
dilution down the microtiter plate. The plate was inoculated with the bacterial
strain in question then incubated overnight and evaluated for bacterial growth.
Each well in the microplate checkerboard contains a different combination of
concentrations of the inhibitor and the antibiotic thus allowing determination
of synergy between the two.
(isomer A)
O
SO3H
13
O
HN
N
NH2
N
H
31b
H
H
N
(isomer B)
O
SO3H
14
Conditions: (i) N,N0-disuccinimidyl carbonate, MeCN; (ii) 18, NaHCO3, MeCN, H2O;
(iii) Pd(OH)2, MeOH, AcOH, H2O, 40 psi H2.
a
Overall yield (%) for three-step conversion of amine to final product.
Based on its superior in vitro and in vivo activity and acceptable
pharmacokinetics (matching imipenem, data not shown), 2 was se-
lected for further development in combination with IPM/CIL for
treatment of IPM-resistant Pseudomonas infections. Unfortunately,
development of 2 has since been terminated due to an inadequate
therapeutic margin in subsequent safety studies. Future reports
from this laboratory will describe our continuing efforts to identify
an optimal BLI for combination with imipenem.
12. Tanuwidjaja, J.; Peltier, H. M.; Ellman, J. A. J. Org. Chem. 2007, 72, 626.
13. Lactam 24a is commercially available (Matrix). Lactams 24b and 24c were
prepared by condensation of N,N0-bis-benzyl ethylene diamine and N-benzyl-
N-BOC-ethanolamine, respectively, with the methyl ester of N-CBZ-2-aziridine
carboxylic acid followed by cyclization of the intermediate amino ester to
afford the desired lactam.
References and notes
1. (a) Baughman, R. P. J. Intens. Care. Med. 2009, 24, 230; (b) Bradley, J. S.; Garau, J.;
Lode, H.; Rolston, K. V. I.; Wilson, S. E.; Quinn, J. P. Int. J. Antimicrob. Agents 1999,
11, 93.
14. Young, K. et al., in preparation.
15. Lee, S. et al., in preparation.