S. Gowrisankar et al. / Tetrahedron Letters 49 (2008) 1670–1673
1673
(5 mL, 1:1) was added DABCO (123 mg, 1.1 mmol) at room temper-
ature. After 15 min, 2-bromoaniline (172 mg, 1.0 mmol) was added to
the reaction mixture and stirred at room temperature for 7 days. After
the usual aqueous workup and column chromatographic purification
process (hexanes/ether, 95:5) we obtained 2a (194 mg, 56%) as colorless
oil. A stirred mixture of 2a (173 mg, 0.5 mmol), palladium acetate
(11 mg, 0.05 mmol, 10 mol %), K2CO3 (138 mg, 1.0 mmol) in PEG-
3400 (160 mg)/DMF (2 mL) was heated to 80–90 °C for 2 h under N2.
After the usual aqueous workup and column chromatographic purifi-
cation process (hexanes/EtOAc, 9:1) we obtained 4a (77 mg, 58%) as
colorless oil. Other compounds were synthesized analogously and some
selected spectroscopic data of compounds 2a, 4a, 4e, 5a, 6a, and 6d are
as follows: Compound 2a: colorless oil; 56%; IR (film) 3410, 1720, 1593,
1496 cmꢀ1; 1H NMR (CDCl3, 300 MHz) d 3.72 (s, 3H), 4.85 (br s, 1H),
5.50 (s, 1H), 5.89 (s, 1H), 6.39 (s, 1H), 6.52–6.61 (m, 2H), 7.09–7.15 (m,
1H), 7.29–7.44 (m, 6H); 13C NMR (CDCl3, 75 MHz) d 52.02, 58.60,
109.95, 112.52, 118.40, 126.26, 127.43, 127.94, 128.38, 128.85, 132.37,
139.90, 139.97, 143.44, 166.51; ESIMS m/z 346 (M++1).
In summary, we prepared some 2-arylquinoline deriva-
tives via the palladium-mediated sequential cyclization and
concomitant aerobic oxidation process in a one-pot reaction
from modified Baylis–Hillman adducts. In addition, we pre-
pared some exo-methylene tetrahydropyridine derivatives.
References and notes
1. For the Pd-mediated synthesis of hetero- and carbocyclic compounds
from modified Baylis–Hillman adducts, see: (a) Ribiere, P.; Declerck,
V.; Nedellec, Y.; Yadav-Bhatnagar, N.; Martinez, J.; Lamaty, F.
Tetrahedron 2006, 62, 10456–10466; (b) Declerck, V.; Ribiere, P.;
Nedellec, Y.; Allouchi, H.; Martinez, J.; Lamaty, F. Eur. J. Org. Chem.
2007, 201–208; (c) Szlosek-Pinaud, M.; Diaz, P.; Martinez, J.; Lamaty,
F. Tetrahedron 2007, 63, 3340–3349; (d) Vasudevan, A.; Tseng, P.-S.;
Djuric, S. W. Tetrahedron Lett. 2006, 47, 8591–8593; (e) Trost, B. M.;
Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155–13164; (f)
Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2002, 124,
11616–11617; (g) Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. Bull.
Korean Chem. Soc. 2004, 25, 927–930.
2. For the synthesis of quinolines, pyridines, and related compounds from
Baylis–Hillman adducts in our group, see: (a) Park, D. Y.; Lee, M. J.;
Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2005, 46, 8799–8803; (b) Lee,
M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 439–
442; (c) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005,
61, 1493–1499; (d) Kim, S. C.; Gowrisankar, S.; Kim, J. N. Bull.
Korean Chem. Soc. 2005, 26, 1001–1004; (e) Lee, C. G.; Lee, K. Y.;
Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2004, 45, 7409–7413; (f)
Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron 2003, 59, 385–390; (g)
Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett.
2001, 42, 8341–8344; (h) Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S.
Tetrahedron Lett. 2001, 42, 3737–3740; (i) Kim, J. N.; Lee, K. Y.; Kim,
H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343–345.
3. For the synthesis of quinolines and related compounds from Baylis–
Hillman adducts by other groups, see: (a) Pathak, R.; Madapa, S.;
Batra, S. Tetrahedron 2007, 63, 451–460; (b) Madapa, S.; Singh, V.;
Batra, S. Tetrahedron 2006, 62, 8740–8747; (c) Narender, P.; Srinivas,
U.; Ravinder, M.; Ananda Rao, B.; Ramesh, C.; Harakishore, K.;
Gangadasu, B.; Murthy, U. S. N.; Jayathirtha Rao, V. Bioorg. Med.
Chem. 2006, 14, 4600–4609; (d) Basavaiah, D.; Reddy, R. J.; Rao, J. S.
Tetrahedron Lett. 2006, 47, 73–77; (e) Basavaiah, D.; Reddy, R. M.;
Kumaragurubaran, N.; Sharada, D. S. Tetrahedron 2002, 58, 3693–
3697; (f) O’Dell, D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68, 6427–
6430; (g) O’Dell, D. K.; Nicholas, K. M. Tetrahedron 2003, 59, 747–
754; (h) Familoni, O. B.; Klaas, P. J.; Lobb, K. A.; Pakade, V. E.;
Kaye, P. T. Org. Biomol. Chem. 2006, 4, 3960–3965; (i) Familoni, O.
B.; Kaye, P. T.; Klaas, P. J. Chem. Commun. 1998, 2563–2564; (j) Yi,
H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 1953–1960;
(k) Hong, W. P.; Lee, K. J. Synthesis 2006, 963–968.
4. For the synthesis of authentic samples of synthesized quinolines and
pyridines, see: (a) Odle, R.; Blevins, B.; Ratcliff, M.; Hegedus, L. S. J.
Org. Chem. 1980, 45, 2709–2710; (b) Rosa, A. M.; Lobo, A. M.;
Branco, P. S.; Prabhakar, S.; Pereira, A. M. D. L. Tetrahedron 1997,
53, 269–284; (c) Shao, H. W.; Cai, J. C. Chinese Chem. Lett. 1997, 8,
493–496; (d) Leleu, S.; Papamicael, C.; Marsais, F.; Dupas, G.;
Levacher, V. Tetrahedron: Asymmetry 2004, 15, 3919–3928; (e)
Penhoat, M.; Levacher, V.; Dupas, G. J. Org. Chem. 2003, 68, 9517–
9520; (f) Kanomata, N.; Nakata, T. Heterocycles 1998, 48, 2551–2558.
5. For the palladium-catalyzed aerobic oxidation of amines, see: (a)
Wang, J.-R.; Fu, Y.; Zhang, B.-B.; Cui, X.; Liu, L.; Guo, Q.-X.
Tetrahedron Lett. 2006, 47, 8293–8297; (b) Wang, J.-R.; Yang, C.-T.;
Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2007, 48, 5449–5453.
Compound 4a: colorless oil; 58%; IR (film) 2924, 1730, 1487, 1269,
1
1232 cmꢀ1; H NMR (CDCl3, 300 MHz) d 3.74 (s, 3H), 7.42–7.51 (m,
3H), 7.58–7.66 (m, 3H), 7.79–7.85 (m, 1H), 7.92 (d, J = 8.4 Hz, 1H),
8.20 (d, J = 8.4 Hz, 1H), 8.66 (s, 1H); 13C NMR (CDCl3, 75 MHz) d
52.41, 125.06, 125.80, 127.27, 128.21 (2C), 128.55, 128.66, 129.57,
131.62, 139.20, 140.55, 148.45, 158.03, 168.37; ESIMS m/z 264 (M++1).
Anal. Calcd for C17H13NO2: C, 77.55; H, 4.98; N, 5.32. Found: C,
77.41; H, 5.12; N, 5.24.
Compound 4e: colorless oil; 60%; IR (film) 2949, 1728, 1437,
;
1269 cmꢀ1 1H NMR (CDCl3, 300 MHz) d 2.56 (s, 3H), 3.73 (s, 3H),
7.42–7.50 (m, 3H), 7.61–7.65 (m, 4H), 8.07 (d, J = 8.4 Hz, 1H), 8.55 (s,
1H); 13C NMR (CDCl3, 75 MHz) d 21.57, 52.33, 124.95, 125.81, 126.91,
128.15, 128.49, 128.50, 129.18, 133.95, 137.28, 138.47, 140.64, 147.06,
157.11, 168.50; ESIMS m/z 278 (M++1). Anal. Calcd for C18H15NO2:
C, 77.96; H, 5.45; N, 5.05. Found: C, 78.04; H, 5.42; N, 4.97.
Compound 5a: sticky oil; 92%; IR (KBr) 2952, 1724, 1630, 1439 cmꢀ1
;
1H NMR (CDCl3, 300 MHz) d 2.41 (s, 3H), 3.62 (s, 3H), 4.08 (d,
J = 17.7 Hz, 1H), 4.21 (d, J = 17.7 Hz, 1H), 5.29–5.31 (m, 1H), 5.50–
5.52 (m, 1H), 5.59 (d, J = 1.5 Hz, 1H), 6.22 (s, 1H), 6.39 (d, J = 1.2 Hz,
1H), 7.06–7.09 (m, 2H), 7.20–7.23 (m, 5H), 7.62 (d, J = 8.1 Hz, 2H); 13
C
NMR (CDCl3, 75 MHz) d 21.52, 52.08, 53.43, 62.12, 118.79, 127.60,
127.93, 128.01, 128.52, 128.56, 128.68, 129.41, 136.46, 137.25, 138.65,
143.54, 166.19; ESIMS m/z 464 (M++1).
Compound 6a: colorless oil; 62%; IR (film) 2925, 1726, 1342, 1163 cmꢀ1
;
1H NMR (CDCl3, 300 MHz) d 2.38 (s, 3H), 3.67 (s, 3H), 3.62–3.68 (m,
1H), 4.37 (d, J = 16.8 Hz, 1H), 5.19 (s, 1H), 5.24 (s, 1H), 6.00 (s, 1H), 7.06
(s, 1H), 7.16 (d, J = 8.4 Hz, 2H), 7.27–7.33 (m, 5H), 7.61 (d, J = 8.4 Hz,
2H); 13C NMR (CDCl3, 75 MHz) d 21.51, 43.10, 52.11, 55.36, 120.27,
127.46, 128.15, 128.16, 128.53(2C),129.26, 135.70, 136.55,137.37, 137.42,
143.44, 165.43;ESIMS m/z 384(M++1). Anal. Calcdfor C21H21NO4S:C,
65.78; H, 5.52; N, 3.65. Found: C, 65.57; H, 5.76; N, 3.39.
Compound 6d: colorless oil; 46%; IR (film) 2924, 1724, 1599, 1439 cmꢀ1
;
1H NMR (CDCl3, 300 MHz) d 2.26 (s, 3H), 3.83 (s, 3H), 4.12 (d,
J = 17.1 Hz, 1H), 4.42 (d, J = 17.1 Hz, 1H), 4.94 (s, 1H), 5.08 (s, 1H), 5.42
(s, 1H), 6.13 (s, 1H), 6.33 (s, 1H), 6.94 (d, J = 8.4 Hz, 2H), 6.95–7.00 (m,
1H), 7.05–7.18 (m, 2H), 7.30–7.34 (m, 1H), 7.45 (d, J = 8.4 Hz, 2H); 13
C
NMR (CDCl3, 75 MHz) d 21.33, 45.34, 52.26, 57.07, 109.44, 123.59,
127.46, 127.69, 127.77, 128.13, 128.73, 129.71, 131.45, 132.00, 135.20,
136.13, 140.50, 142.90, 166.22; ESIMS m/z 384 (M++1). Anal. Calcd for
C21H21NO4S:C, 65.78;H, 5.52;N, 3.65. Found:C, 65.63;H, 5.85;N, 3.49.
8. For the palladium-mediated synthesis of tetrahydropyridines and
tetrahydroquinolines and their synthetic applications, see: (a) Beccalli,
E. M.; Broggini, G.; Martinelli, M.; Masciocchi, N.; Sottocornola, S.
Org. Lett. 2006, 8, 4521–4524; (b) Soderberg, B. C. G.; Hubbard, J. W.;
Rector, S. R.; O’Neil, S. N. Tetrahedron 2005, 61, 3637–3649; (c)
Grigg, R.; Kordes, M. Eur. J. Org. Chem. 2001, 707–712; (d) Gai, X.;
Grigg, R.; Koppen, I.; Marchbank, J.; Sridharan, V. Tetrahedron Lett.
2003, 44, 7445–7448; (e) Grigg, R.; Sridharan, V.; Thayaparan, A.
Tetrahedron Lett. 2003, 44, 9017–9019; (f) Oh, C. H.; Park, S. J.
Tetrahedron Lett. 2003, 44, 3785–3787.
6. We examined a few conditions involving the variation of base (K2CO3,
Cs2CO3, Et3N) and solvent (CH3CN, DMF).
7. Typical procedure for the synthesis of 2a and 4a: To a stirred solution of
the Baylis–Hillman acetate (1a, 234 mg, 1.0 mmol) in aqueous THF