C O M M U N I C A T I O N S
Table 2. Scope of Pd-Catalyzed Coupling of Aryl Iodides,
corresponding aryl bromides could be employed, albeit to deliver
products in reduced yields. For example, sulfonamide 2a was
isolated in 93% yield when iodotoluene was used but only 56%
yield when bromotoluene was employed and the reaction was
performed at the increased temperature of 90 °C. Several alternative
hydrazine coupling partners were also utilized successfully
(2n-q).11 Finally, a preparative-scale reaction employing 500 mg
of iodotoluene (2.29 mmol) using the standard reaction conditions
delivered aminosulfonamide 2a in 92% isolated yield.
DABCO·(SO2)2, and Hydrazinesa b
,
In conclusion, we have shown for the first time that it is possible
to prepare C-SO2-N linkages using a palladium-catalyzed ami-
nosulfonylation process. Key to the success of the chemistry was
the use of solid DABCO ·(SO2)2 as an easy to handle equivalent of
sulfur dioxide. With this reagent, it was possible to achieve efficient
aminosulfonylation reactions between a range of aryl iodides and
N,N-dialkylhydrazines, providing aryl N-aminosulfonamides in good
to excellent yields. The reactions are operationally simple and
employ only a slight excess (1.2 equiv) of sulfur dioxide. Studies
aimed at elucidating the mechanism of the process and developing
related transformations are underway.
Acknowledgment. We thank the EPSRC for the award of an
Advanced Research Fellowship (to M.C.W.).
Supporting Information Available: Experimental procedures and
full characterization for all compounds. This material is available free
References
(1) For reviews, see: (a) Kubas, G. J. Acc. Chem. Res. 1994, 27, 183. (b)
Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98. (c) Kubas, G. J.
Inorg. Chem. 1979, 18, 182. (d) Mingos, D. M. P. Transition Met. Chem.
1978, 3, 1.
(2) For a review, see: Pelzer, G.; Herwig, J.; Keim, W.; Goddard, R. Russ.
Chem. Bull. 1998, 47, 904.
(3) Alkene hydrosulfination: (a) Klein, H. S. Chem. Commun. 1968, 377. (b)
Herwig, J.; Keim, W. J. Chem. Soc., Chem. Commun. 1993, 1592. (c)
Herwig, J.; Keim, W. Inorg. Chim. Acta 1994, 222, 381. (d) Keim, W.;
Herwig, J.; Pelzer, G. J. Org. Chem. 1997, 62, 422. Sulfinic acid synthesis
from an aryldiazonium salt: (e) Pelzer, G.; Keim, W. J. Mol. Catal. A:
Chem. 1999, 139, 235. Alkene-SO2 copolymerization: (f) Wojcinski, L. M.;
Boyer, M. T.; Sen, A. Inorg. Chim. Acta 1998, 270, 8. Sulfolene formation
from dienes and SO2: (g) Dzhemilev, U. M.; Kunakova, R. V. J. Organomet.
Chem. 1993, 455, 1.
(4) For reviews, see: (a) Brennfu¨hrer, A.; Neumann, H.; Beller, M. Angew.
Chem., Int. Ed. 2009, 48, 4114. (b) Brennfu¨hrer, A.; Neumann, H.; Beller,
M. ChemCatChem 2009, 1, 28. (c) Barnard, C. F. J. Organometallics 2008,
27, 5402.
(5) Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed.; Elvers, B.,
Hawkins, S., Russey, W., Eds.; VCH: Weinheim, Germany, 1994; Vol.
A25.
(6) (a) Divers, E.; Ogawa, M. J. Chem. Soc., Trans. 1900, 77, 327. Selected
examples: (b) Moede, J. A.; Curran, C. J. Am. Chem. Soc. 1949, 71, 852.
(c) Hata, T.; Kinumaki, S. Nature 1964, 203, 1378. (d) van der Helm, D.;
Childs, J. D.; Christian, S. D. Chem. Commun. 1969, 887. (e) Douglas,
J. E.; Kollman, P. A. J. Am. Chem. Soc. 1978, 100, 5226. (f) Wong, M. W.;
Wiberg, K. B. J. Am. Chem. Soc. 1992, 114, 7527.
(7) Euge´ne, F.; Langlois, B.; Laurent, E. J. Org. Chem. 1994, 59, 2599.
(8) (a) Olah, G. A.; Vankar, Y. D. Synthesis 1978, 702. (b) Olah, G. A.; Vankar,
Y. D.; Gupta, B. G. B. Synthesis 1979, 36. (c) Olah, G. A.; Vankar, Y. D.;
Fung, A. P. Synthesis 1979, 59. (d) Olah, G. A.; Vankar, Y. D.; Arvanaghi,
M. Synthesis 1979, 984. (e) Olah, G. A.; Arvanaghi, M.; Vankar, Y. D.
Synthesis 1980, 660.
(9) Santos, P. S.; Mello, M. T. S. J. Mol. Struct. 1988, 178, 121.
(10) Tadd, A. C.; Fielding, M. R.; Willis, M. C. Org. Lett. 2009, 11, 583.
(11) Attempts to substitute the hydrazine nucleophiles with primary amines
resulted in the recovery of unreacted starting materials.
a Conditions: aryl halide (1.0 equiv), hydrazine (1.5 equiv),
DABCO·(SO2)2 (0.6 equiv), DABCO (0.5 equiv), Pd(OAc)2 (10 mol
%), PtBu3 ·HBF4 (20 mol %), 1,4-dioxane, 70 °C, 16 h. b Isolated yields.
c DABCO·(SO2)2 (1.1 equiv.) was used, and no DABCO was added.
d With 95% conversion.
coupled in 76% yield (2e). With the use of either set of conditions
as appropriate, substrates featuring a variety of functional groups,
including free hydroxyl (2i), electron-withdrawing trifluoromethyl
(2j) and methyl ester (2k), and 3-thienyl (2l), were smoothly
coupled. An E-configured alkenyl iodide was also employed,
allowing the ready preparation of alkenyl aminosulfonamide 2m.
Although aryl iodides were the most efficient substrates, the
JA1081124
9
J. AM. CHEM. SOC. VOL. 132, NO. 46, 2010 16373