_
I. Ku¨c¸u¨kgu¨zel et al. / European Journal of Medicinal Chemistry 43 (2008) 381e392
385
Table 2
1H NMR spectral data of compounds 23e42
Compound 1H NMR (d)
23
24
3.43 (s, 3H, pN-CH3); 4.68 (b, 2H, Ar-NH2); 5.00 (s, 2H, eOCH2e); 6.48 (d, 2H, J ¼ 8.78 Hz, Ar-H); 6.72 (d, 2H, J ¼ 8.78 Hz, Ar-H).
1.25 (t, 3H, pNeCH2eCH3), 4.00 (q, 2H, pNeCH2eCH3); 4.72 (b, 2H, Ar-NH2); 5.00 (s, 2H, eOCH2e); 6.45 (d, 2H, J ¼ 8.78 Hz, Ar-H);
6.72, (d, 2H, J ¼ 8.78 Hz, Ar-H).
25
4.62 (s, 2H, NHeCH2eCH]CH2); 4.70e4.80 (b, 2H, Ar-NH2); 4.95 (s, 2H, eOCH2e); 5.0 (d, 1H, eCH2eCH]CH2, J ¼ 17.0 Hz, trans);
5.20 (d, 1H, eCH2eCH]CH2, J ¼ 10.5 Hz, cis); 5.78e5.95 (m, 1H, NHeCH2eCH]CH2); 6.45 (d, 2H, J ¼ 9. 00 Hz, Ar-H);
6.72 (d, 2H, J ¼ 8.70 Hz, Ar-H).
26
27
4.68 (b, 2H, Ar-NH2); 4.75 (s, 2H, eOCH2e); 6.35 (d, 2H, J ¼ 8.78 Hz, Ar-H); 6.45 (d, 2H, J ¼ 8.78 Hz, Ar-H); 7.40e7.50 (m, 5H, Ar-H).
2.89 (d, 3H, NHeCH3); 3.51 (s, 3H, pNeCH3) 5.22 (s, 2H, eOCH2e); 7.05 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.25 (d, 2H, J ¼ 8.78 Hz, m-OCH2);
7.50 (s, 1H, thiourea NH) 9.40 (s, 1H, thiourea N0H); 13.90 (s, 1H, triazole NH).
28
29
1.10 (t, 3H, NHeCH2eCH3); 3.51 (m, 2H, Ar-NHeCSeNHeCH2eCH3); 3.57 (s, 3H, pNeCH3); 5.23 (s, 2H, eOCH2e); 7.05 (d, 2H,
J ¼ 8.78 Hz, o-OCH2); 7.27 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.70 (s, 1H, thiourea NH); 9.30 (s, 1H, thiourea N0H); 13.98 (s, 1H, triazole NH).
3.46 (s, 3H, pNeCH3); 4.07 (s, 2H, eCH2eCH]CH2); 5.03e5.09 (m, 2H, eCH2eCH]CH2); 5.18 (s, 2H, eOCH2e); 5.82e6.00
(m, 1H, eCH2eCH]CH2); 7.02 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.25 (d, 2H, J ¼ 8.78 Hz, m-OCH2), 7.70 (s, 1H, thiourea NH);
9.36 (s, 1H, thiourea N0H); 13.80 (s, 1H, triazole NH).
30
31
32
3.52 (s, 2H, pNeCH3); 5.24 (s, 2H, eOCH2); 7.05e7.47 (m, 9H, Ar-H); 9.67 (s, 1H, thiourea N0H); 9.72 (s, 1H, thiourea NH);
13.85 (s, 1H, triazole NH)
1.29 (t, 3H, pNeCH2CH3); 2.91 (d, 3H, NHeCH3); 4.03 (q, 2H, pNeCH2CH3); 5.17 (s, 2H, eOCH2); 7.05 (d, 2H, J ¼ 8.78 Hz, o-OCH2);
7.25 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.51 (b, 1H, thiourea NH); 9.56 (b, 1H, thiourea N0H); 13.92 (s, 1H, triazole NH)
1.12 (t, 3H, NHeCH2eCH3); 1.27 (t, 3H, pNeCH2eCH3); 3.47 (m, 2H, NHeCH2eCH3); 4.03 (q, 2H, pNeCH2CH3); 5.22 (s, 2H, eOCH2);
7.06 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.26 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.51 (s, 1H, thiourea NH); 9.30 (s, 1H, thiourea N0H);
13.98 (s, 1H, triazole NH).
33
1.29 (t, 3H, pNeCH2eCH3); 4.03 (q, 2H, pNeCH2eCH3); 4.13 (s, 2H, eCH2eCH]CH2) 5.10 (d, 1H, eCH2eCH]CH2, J ¼ 17.0 Hz, trans);
5.24 (m, 3H, eOCH2e and eCH2eCH]CH2, cis); 5.80e6.00 (m, 1H, pNeCH2eCH]CH2); 7.06 (d, 2H, J ¼ 8.78 Hz, o-OCH2);
7.30 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.67 (s, 1H, thiourea NH); 9.42 (s, 1H, thiourea N0H); 13.97 (s, 1H, triazole NH).
1.29 (t, 3H, pNeCH2eCH3); 4.08 (q, 2H, pNeCH2CH3); 5.24 (s, 2H, eOCH2); 7.04e7.47 (m, 9H, Ar-H); 9.66 and 9.71 (s, 2H, NHeCSeNH );
13.98 (s, 1H, triazole NH)
34
35
2.84 (d, 3H, NHeCH3); 4.65 (s, 2H, eCH2eCH]CH2); 5.04 (d, 1H, eCH2eCH]CH2, J ¼ 17.0 Hz, trans); 5.12 (s, 2H, eOCH2e); 5.17
(d, 1H, J ¼ 11.1 Hz, eCH2eCH]CH2, cis); 5.80e6.00 (m, 1H, eCH2eCH]CH2); 6.97 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.20 (d, 2H, J ¼ 8.78 Hz,
m-OCH2), 7.45 (s, 1H, thiourea NH); 9.30 (s, 1H, thiourea N0H); 13.85 (s, 1H, triazole NH)
36
37
1.05 (m, 3H, NHeCH2eCH3); 3,42 (m, 2H, NHeCH2eCH3); 4.64 (s, 2H, eCH2eCH]CH2); 5.05 (d, 1H, eCH2eCH]CH2, J ¼ 17.57 Hz,
trans); 5.12 (s, 2H, eOCH2e); 5.17 (d, 1H, J ¼ 9.95 Hz, eCH2eCH]CH2, cis); 5.80e6.00 (m, 1H, eCH2eCH]CH2); 6.96 (d, 2H, J ¼ 8.78 Hz,
o-OCH2); 7.21 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.45 (s, 1H, thiourea NH); 9.30 (s, 1H, thiourea N0H); 13.85 (s, 1H, triazole NH)
4.19 (s, 2H, NHeCH2eCH]CH2); 4.71 (d, 2H, pNeCH2eCH]CH2); 5,01e5.07 (d, 2H, pNeCH2eCH]CH2 and NHeCH2eCH]CH2
J ¼ 17.0 Hz, trans); 5.12 (s, 2H, eOCH2e); 5.15e5.19 (d, 2H, pNeCH2eCH]CH2 and NHeCH2eCH]CH2, J ¼ 11.1 Hz, cis); 5.80e6.00
(m, 2H, pNeCH2eCH]CH2 and NHeCH2eCH]CH2); 7.01 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.26 (d, 2H, J ¼ 8.78 Hz, m-OCH2);
7.70 (s, 1H, thiourea NH); 9.40 (s, 1H, thiourea N0H); 13.96 (s, 1H, triazole NH)
38
4.71 (d, 2H, eCH2eCH]CH2); 5.05 (d, 1H, eCH2eCH]CH2, J ¼ 17.0 Hz, trans); 5.18 (s, 2H, eOCH2e); 5.21 (d, 1H, J ¼ 11.1 Hz,
pNeCH2eCH]CH2, cis); 5.80e6.00 (m, 1H, pNeCH2eCH]CH2); 7.02e7.47 (m, 9H, Ar-H); 9.66 and 9.71 (s, 2H, NH-CS-NH );
13.99 (s, 1H, triazole NH)
39
40
41
2.91 (d, 3H, NHeCH3); 4.96 (s, 2H, eOCH2e); 6.80 (d, 2H, J ¼ 8.78, o-OCH2); 7.18 (d, 2H, J ¼ 8.78, m-OCH2); 7.46e7.57 (m, 6H, Ar-H and
thiourea NH); 9.35 (b, 1H, thiourea N0H)
1.09 (t, 3H, eCH2eCH3); 3.44 (q, 2H, eCH2eCH3); 4.95 (s, 2H, eOCH2e); 6.80 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.17 (d, 2H, J ¼ 8.78 Hz,
m-OCH2); 7.46e7.57 (m, 5H; Ar-H); 7.57 (s, 1H, thiourea NH); 9.25 (s, 1H, thiourea N0H); 13.97 (s, 1H, triazole NH)
4.97 (d, 2H, eCH2eCH]CH2); 5.10 (d, 1H, eCH2eCH]CH2, J ¼ 17.0 Hz, trans); 5.16 (d, 1H, J ¼ 11.1 Hz, eCH2eCH]CH2, cis); 5.82e5.95
(m, 1H, pNeCH2eCH]CH2); 6.83 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.22 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.29e7.59 (m, 5H, Ar-H); 7.69
(s, 1H, thiourea NH); 9.38 (s, 1H, Ar-thiourea N0H)
42
4.91 (s, 2H, eOCH2e); 6.76 (d, 2H, J ¼ 8.78 Hz, o-OCH2); 7.23 (d, 2H, J ¼ 8.78 Hz, m-OCH2); 7.04e7.51 (m, 10H, eC6H5);
9.56 (s, 1H, thiourea N0H); 9.63 (s, 1H, thiourea NH); 13.98 (s, 1H, triazole NH)
were observed at 7.50e9.72 ppm (R2-NHCSNHeC6H4OCH2e)
and 9.30e9.71 ppm (R2-NHCSNHeC6H4OCH2e). Triazole
NH resonances between 13.80 and 13.98 ppm, were observed
to be shifted to downfield because of strong intermolecular
hydrogen bonding as previously reported [34] The NeH protons
of compounds 23e26, 39 and 41 exchanged with deuterium in
the solvent used for obtaining the 1H NMR spectra. Remaining
chemical shifts were also recorded at expected values.
13C NMR data of the representative thiourea derivative 29
also supported the carbon framework of triazole ring and
thiourea moieties by displaying high accuracy between experi-
mental and calculated 13C chemical shifts (Table 3). Calculation
of the 13C NMR chemical shifts were performed using ACD/
CNMR Predictor software available online at ACD/I-Lab
As shown in Table 3, thiocarbonyl (C]S) carbon present in
triazoline ring and thiourea function resonated at 168.39 ppm
and 180.52 ppm, whereas these values were predicted as
168.40 ppm and 180.80 ppm, respectively. Remaining reso-
nanceswerealsoobservedtobeconsistentwithcalculatedvalues.
High resolution mass spectra (HR-MS) confirmed the molec-
ular weights and empirical formula of compounds 23e42, with
less than 8 mmu bias between calculated and experimental m/z
values of either molecular or fragment ions (Table 1). Ionization