C. Cheng et al. / Tetrahedron 65 (2009) 8538–8541
8541
using double amount of ClCH2CHCl2 (entries 5 and 15). Two ex-
Acknowledgements
amples of 3-pyridinecarboxamides (5q–r) were also tested and they
worked well but with longer reaction time in comparison with their
4-substituted counterparts (entries 17 and 18). Unfortunately, 2-
pyridinecarboxamide did not undergo a hydrogenation under our
conditions. Finally, the hydrogenation of the parent compound
pyridine was tested under the Condition A. We observed that there
was no absorption of hydrogen in the absence of ClCH2CHCl2, while
96% isolated yield of piperidine hydrochloride was obtained in the
presence of ClCH2CHCl2 in 23 h. These results further indicated that
ClCH2CHCl2 is essential for this novel hydrogenation and the elec-
tron-withdrawing group substituted on the pyridine ring benefited
rate of the hydrogenation.
This work was supported by NNSFC (30600779, 20672066) and
by the Cultivation Fund of the Key Scientific and Technical In-
novation Project, Ministry of Education of China (706003).
Supplementary data
Experimental procedures and full spectroscopic data for 4a–r$
nHCl are given in the Supplementary data. Supplementary data
associated with this article can be found in the online version, at
References and notes
3. Conclusions
1. (a) Imamura, S.; Ichikawa, T.; Nishikawa, Y.; Kanzaki, N.; Takashima, K.; Niwa,
S.; Iizawa, Y.; Baba, M.; Sugihara, Y. J. Med. Chem. 2006, 49, 2784–2793;
(b) Shinichi, I.; Youichi, N.; Takashi, I.; Taeko, H.; Yoshihiro, M.; Shohei, H.; Naoyuki,
K.; Yuji, I.; Masanori, B.; Yoshihiro, S. Bioorg. Med. Chem. 2005, 13, 397–416.
2. (a) Vasiliou, S.; Castaner, R.; Bolos, J. Drugs Future 2008, 33, 932–937; (b) Misra,
R. N.; Xiao, H.; Kim, K. S.; Lu, S.; Han, W.; Barbosa, S. A.; Hunt, J. T.; Rawlins, D.
B.; Shan, W.; Ahmed, S. Z.; Qian, L.; Chen, B.; Zhao, R.; Bednarz, M. S.; Kellar, K.
A.; Mulheron, J. G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive,
S. A.; Sack, J. S.; Tokarski, J. S.; Pavletich, N. P.; Lee, F. Y. F.; Webster, K. R.;
Kimball, S. D. J. Med. Chem. 2004, 47, 1719–1728.
3. (a) De Corte, B. L.; Kinney, W. A.; Liu, L.; Ghosh, S.; Brunner, L.; Hoekstra, W. J.;
Santulli, R. J.; Tuman, R. W.; Baker, J.; Burns, C.; Proost, J. C.; Tounge, B. A.;
Damiano, B. P.; Maryanoff, B. E.; Johnson, D. L.; Galemmo, R. A. Bioorg. Med.
Chem. Lett. 2004, 14, 5227–5232; (b) Hoekstra, W. J.; Maryanoff, B. E.; Damiano,
B. P.; Andrade-Gordon, P.; Cohen, J. H.; Costanzo, M. J.; Haertlein, B. J.; Hecker,
L. R.; Hulshizer, B. L.; Kauffman, J. A.; Keane, P.; McComsey, D. F.; Mitchell, J. A.;
Scott, L.; Shah, R. D.; Yabut, S. C. J. Med. Chem. 1999, 42, 5254–5265.
4. (a) Manetti, D.; Cesare Mannelli, L. D.; Dei, S.; Galeotti, N.; Ghelardini, C.; Ro-
manelli, M. N.; Scapecchi, S.; Teodori, E.; Pacini, A.; Bartolini, A.; Gualtieri, F. J.
Med. Chem. 2005, 48, 6491–6503; (b) Ritchie, T. J.; Dziadulewicz, E. K.; Culshaw,
A. J.; Mueller, W.; Burgess, G. M.; Bloomfield, G. C.; Drake, G. S.; Dunstan, A. R.;
Beattie, D.; Hughes, G. A.; Ganju, P.; McIntyre, P.; Bevan, S. J.; Davis, C.; Yaqoob,
M. J. Med. Chem. 2004, 47, 4642–4644; (c) Itani, H.; Ito, H.; Sakata, Y.; Hata-
keyama, Y.; Oohashi, H.; Satoh, Y. Bioorg. Med. Chem. Lett. 2002, 12, 757–761;
(d) Luo, Z.; Williams, J.; Read, R. W.; Curran, D. P. J. Org. Chem. 2001, 66, 4261–4266.
5. (a) Nelsen, S. F.; Ippoliti, J. T.; Petillo, P. A. J. Org. Chem. 1990, 55, 3825–3833;
(b) Alabaster, V. A.; Campbell, S. F.; Danilewicz, J. C.; Greengrass, C. W.; Plews,
R. M. J. Med. Chem. 1987, 30, 999–1003; (c) Blaney, F. E.; Clark, M. S. G.; Gardner,
D. V.; Hadley, M. S.; Middleton, D.; White, T. J. J. Med. Chem. 1983, 26, 1747–1752.
6. (a) Cui, Y.; Kwok, S.; Bucholtz, A.;Davis, B.; Whitneya, R. A.; Jessop, P. G. New J. Chem.
2008, 32, 1027–1037; (b) Maegawa, T.; Akashi, A.; Sajiki, H. Synlett 2006, 1440–
1442; (c) Freifelder, M.; Robinson, R. M.; Stone, G. R. J. Org. Chem.1962, 27, 284–286.
7. (a) Nishimura, S. Handbook of Heterogeneous Catalytic Hydrogenation for Organic
Synthesis; John Wiley & Sons: New York, NY, 2001; Chapter 12, pp 504–518; (b)
Rylander, P. N. Hydrogenation Methods; Academic: London, 1985; Chapter 11, pp
135–137.
In conclusion, a highly efficient catalytic hydrogenation of pyr-
idinecarboxamides (5) to piperidinecarboxamide hydrochlorides
(4$HCl) was developed. This novel method in fact is a synergistic
catalytic process, in which the initial Pd–C catalytic hydro-
dechlorination ofClCH2CHCl2 waspromoted by pyridinecarboxamide
(5) to chemoselectively release HCl. Then, pyridinecarboxamide as an
HCl acceptor captured HCl molecule to form the corresponding hy-
drochloride (5$HCl), by which the coordination ability of nitrogen in
pyridine ring was blocked and the pyridine nucleus was polarized.
Finally, pyridinecarboxamide hydrochloride (5$HCl) was hydroge-
nated to the corresponding piperidinecarboxamide hydrochloride
(4$HCl). It provided a novelstrategyforhighlyefficient hydrogenation
of pyridine nucleus by Pd–C catalyst under mild conditions. Since the
key intermediate 5$HCl and the target product 4$HCl were formed in
situ during the hydrogenation in a single flask, the method proceeded
with extremely convenient performance and work-up procedures.
4. Experimental section
4.1. General
4.1.1. A typical procedure for the preparation of N-butyl-4-piper-
idinecarboxamide hydrochloride (4b$HCl). The suspension of N-butyl-
4-pyridinecarboxamide (5b, 178 mg, 1.0 mmol), 10% Pd–C (44.5 mg,
25 wt %), and ClCH2CHCl2 (160 mg, 1.2 mmol) in MeOH (30 mL) was
hydrogenated (on an atmospheric pressure hydrogenator) at room
temperature until the absorption of hydrogen ceased (5 h). After the
Pd–C catalyst was filtered off, solvent was removed on a rotavapor.
The residue was diluted with diethyl ether (10 mL) and 4b$HCl
(220 mg, 99%) was collected as a white crystal by filtration. Usually,
the product was pure enough for any analytical purposes.
8. Hamilton, T. S.; Adams, R. J. Am. Chem. Soc. 1928, 50, 2260–2263.
9. Since HCl molecules occupy the Pd–C catalytic sites unreversably under an-
hydrous conditions (anhydrous HCl is a strong poison for Pd–C catalyst) and its
amount is not controllable easily, the anhydrous gaseous HCl could not be used
for this purpose. See Ref. 7a: Chapter 2, pp 53–59.
10. (a) Piras, L.; Genesio, E.; Ghiron, C.; Taddei, M. Synlett 2008, 1125–1128; (b) Diaz,
J. L.; Fernandez-Forner, D.; Bach, J.; Lavilla, R. Synth. Commun. 2008, 38, 2799–
2813; (c) Vartak, A. P.; Dwoskin, L. P.; Crooks, P. A. Tetrahedron Lett. 2008, 49,
6330–6333; (d) Dubost, E.; Le Noue¨n, D.; Streith, J.; Tarnus, C.; Tschamber, T.
Eur. J. Org. Chem. 2006, 610–626; (e) Agai, B.; Proszenyak, B.; Tarkanyi, G.; Vida,
L.; Faigl, F. Eur. J. Org. Chem. 2004, 3623–3632.
11. (a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2002, 102, 4009–4092; (b) See
Ref. 7a: Chapter 13, pp 623–639; (c) See Ref. 7b: Chapter 12, pp 148–156.
12. (a) Xia, C.; Liu, Y.; Xu, J.; Yu, J.; Qin, W.; Liang, X. Catal. Commun. 2009, 10, 456–
458; (b) Kume, A.; Monguchi, Y.; Hattori, K.; Nagase, H.; Sajiki, H. Appl. Catal., B
2008, 81, 274–282; (c) Concibido, N. C.; Okuda, T.; NaKano, Y.; Nishijima, W.;
Okada, M. Tetrahedron Lett. 2005, 46, 3613–3617; (d) Nishijima, W.; Ochi, Y.;
Tsai, T. Y.; Nakano, Y.; Okada, M. Appl. Catal., B 2004, 51, 135–140.
It had mp 106–108 ꢀC (MeOH–Et2O); IR:
n 3353, 3180, 2937,
3.44–3.39 (m, 2H), 3.12–3.07 (m, 2H), 3.04–
1666 cmꢁ1; 1H NMR:
d
2.99 (m, 2H), 2.59–2.50 (m, 1H), 1.99–1.93 (2H), 1.87–1.72 (m, 2H),
1.42–1.37 (m, 2H), 1.26–1.21 (m, 2H), 0.80 (t, 3H, J¼7.22); 13C NMR:
d
175.9, 43.2 (2C), 40.0, 39.1, 30.6, 25.2 (2C), 19.5, 13.2; MS m/z (%):
84 (100); calcd for C10H21ClN2O: C, 54.41; H, 9.59; N, 12.69; found:
C, 54.28; H, 9.67; N, 12.51.
The similar procedure was used to convert the substrates 5a–r
efficiently to the corresponding products 4a–r$nHCl.
13. Cheng, C.; Sun, J.; Xing, L.; Xu, J.; Wang, X.; Hu, Y. J. Org. Chem. 2009, 74, 5671–5674.