N,N′-Diphenyl-1,4-phenylenediamine
J. Phys. Chem. B, Vol. 108, No. 23, 2004 7999
(2) (a) Williams, R. D.; Hupp, J. T.; Ramm, M. T.; Nelsen, S. F. J.
Phys. Chem. A 1999, 103, 11172-11180. (b) Nelsen, S. F.; Trieber, D. A.,
II; Nagy, M. A.; Konradsson, A.; Halfen, D. T.; Splan, K. A.; Pladziewicz,
J. R. J. Am. Chem. Soc. 2000, 122, 5940. (c) Nelsen, S. F. Chem.sEur. J.
2000, 6, 581. (d) Nishikitani, Y.; Kobayashi, M.; Uchida, S.; Kubo, T.
Electrochim. Acta 2001, 46, 2035.
Electrochemical Measurements. Electrochemical analyses
were performed using an electrochemical workstation (BAS Co.,
Ltd., model ALS-660) under the following conditions. Cyclic
voltammetry (CV) was carried out under a N2 atmosphere. A
glassy carbon (GC) disk electrode (0.071 cm2) was used as the
working electrode and was polished with 0.3 µm alumina before
the experiments. The auxiliary electrode was a coiled platinum
wire. The reference electrode was a commercial Ag/Ag+ one,
which was placed in the main cell compartment. The formal
potential of the ferrocene/ferrocenium couple was 0.076 V vs
this reference electrode in acetonitrile. All potentials are quoted
with respect to this Ag/Ag+ reference electrode. The potential
was normalized to the ferrocene/ferrocenium couple in aceto-
nitrile. The scanning rate was 100 mV/s. In all cases, a 0.2 M
solution of tetrabutylammonium perchlorate (TBAP) in dichlo-
romethane was used. These PDA derivatives underwent a two-
step oxidation from the amine to the monocation radical to the
imine forms. In the case of using 0.2 M solution of TBABF4 in
acetonitrile without trifluoroacetric acid (TFA), the second redox
couple was not reversible because the oxidative half-reaction
of the second couple involves the loss of one electron and two
protons, while the cathodic half-reaction entails the gain of one
electron and two protons. However, in dichloromethane with
0.2 M TBAP, the two reversible redox couples were confirmed
without proton transfer because the solvent donor number of
dichloromethane is lower than that of acetonitrile.
(3) Venugopal, G.; Quan, X.; Johnson, G. E.; Houlihan, F. M.; Chin,
E.; Nalamasu, O. Chem. Mater. 1995, 7, 271.
(4) van Meurs, P. J.; Janssen, R. A. J. J. Org. Chem. 2000, 65, 5712.
(5) (a) Asahi, T.; Ohkohchi, M.; Matsusaka, R.; Mataga, N.; Zhang,
R. P.; Osuka, A.; Maruyama, K. J. Am. Chem. Soc. 1993, 115, 5665. (b)
Ohkohchi, M.; Takahashi, A.; Mataga, N.; Okada, T.; Osuka, A.; Yamada,
H.; Maruyama, K. J. Am. Chem. Soc. 1993, 115, 12137. (c) Imahori, H.;
Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.;
Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 2607. (d) Imahori, H.; Guldi,
D. M.; Tamaki, K.; Yoshida, Y.; Luo, C.; Sakata, Y.; Fukuzumi, S. J. Am.
Chem. Soc. 2001, 123, 6617.
(6) (a) Wolf, J. F.; Forbes, C. E.; Gould, S.; Shacklette, L. W. J.
Electrochem. Soc. 1989, 136, 2887. (b) Boyer, M. I.; Quillard, S.; Louarn,
G.; Froyer, G.; Lefrant, S. J. Phys. Chem. B 2000, 104, 8952. (c) Boyer, I.;
Quillard, S.; Corraze, B.; Deniard, P.; Evain, M. Acta Crystallogr. 2000,
C56, e159. (d) Nishiumi, T.; Nomura, Y.; Higuchi, M.; Yamamoto, K.
Chem. Phys. Lett. 2003, 378, 18.
(7) (a) Li, X. G.; Huang, M. R.; Duan, W.; Yang, Y. L. Chem. ReV.
2002, 102, 2925. (b) Yamamoto, K.; Taneichi, D. Macromol. Chem. Phys.
2000, 201, 6.
(8) (a) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988. (b)
Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086. (c) Creutz, C.
Prog. Inorg. Chem. 1983, 30, 1. (d) Brunschwig, B. S.; Creutz, C.; Sutin,
N. Chem. Soc. ReV. 2002, 31, 168.
(9) (a) Ito, T.; Hamaguchi, T.; Nagino, H.; Yamaguchi, T.; Washington,
J.; Kubiak, C. P. Science 1997, 277, 660. (b) Ito, T.; Hamaguchi, T.; Nagino,
H.; Yamaguchi, T.; Zavarine, I. S.; Richmond, T.; Washington, J.; Kubiak,
C. P. J. Am. Chem. Soc. 1999, 121, 4625-4632.
IV-CT Spectra Measurement. Controlled-potential absorp-
tion spectra were obtained with an optically transparent thin-
layer electrode quartz cell (light path length ) 1 mm). The work-
ing and the counter electrodes were platinum mesh and a platin-
um coil, respectively. The potential was applied with a Hokuto-
Denko potentio/galvanostat, model HA-501G, and referred to
Ag/Ag+. The spectra were measured with a Shimadzu UV-
3150PC spectrophotometer. All spectroelectrochemical measure-
ments were carried out at ca. 298 K under a nitrogen atmosphere.
IR-Spectroelectrochemistry. Controlled-potential absorption
spectra of ν(N-H) vibration spectra were obtaind using the same
electrochemical apparatus as in the IV-CT spectra measurement.
The spectra were measured with a JASCO FT-IR-460Plus.
Variable-Temperature IR Spectra of the Amines in the
Mixed-Valence State. Controlled-temperature absorption spec-
tra were obtained with 1 mM PDA•+/PDA-Br•+ in CH2Cl2/CD2-
Cl2 with 0.2 M TBAP prepared by electrochemical one-electron
oxidation in a quartz cuvette (light path length ) 1 mm). The
variable temperature was supplied by an OXFORD cryostat,
model Optistat DN. The spectra were measured with a JASCO
FT-IR-460Plus.
(10) (a) Hush, N. S. Prog. Inorg. Chem. 1967, 8, 391. (b) Sutin, N.
Prog. Inorg. Chem. 1983, 30, 441. (c) Brunschwig, B. S.; Sutin, N. In
Electron Transfer in Chemistry; Balzani, V., Ed.; Wiley-VCH: New York,
2001; Vol. 2, p 583. (d) Brunschwig, B. S.; Creutz, C.; Sutin, N. Chem.
Soc. ReV. 2002, 31, 168.
(11) (a) Nelsen, S. F.; Chang, H.; Wolff, J. J.; Adamus, J. J. Am. Chem.
Soc. 1993, 115, 12276. (b) Nelsen, S. F.; Adamus, J.; Wolff, J. J. J. Am.
Chem. Soc. 1994, 116, 1589. (c) Nelsen, S. F.; Ismagilov, R. F.; Powell,
D. R. J. Am. Chem. Soc. 1996, 118, 6313. (d) Nelsen, S. F.; Ramm, M. T.;
Wolff, J. J.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 6863. (e) Nelsen,
S. F.; Ismagilov, R. F.; Powell, D. R. J. Am. Chem. Soc. 1997, 119, 10213.
(f) Nelsen, S. F.; Tran, H. Q.; Nagy, M. A. J. Am. Chem. Soc. 1998, 120,
298. (g) Nelsen, S. F.; Ismagilov, R. F.; Powell, D. R. J. Am. Chem. Soc.
1998, 120, 1924. (h) Nelsen, S. F.; Ismagilov, R. F.; Teki, Y. J. Am. Chem.
Soc. 1998, 120, 2200. (i) Nelsen, S. F.; Ismagilov, R. F.; Gentile, K. E.;
Powell, D. R. J. Am. Chem. Soc. 1999, 121, 7108. (j) Nelsen, S. F.; Trieber,
D. A.; Ismagilov, R. F.; Teki, Y. J. Am. Chem. Soc. 2001, 123, 5684. (k)
Zwier, J. M.; Brouwer, A. M.; Keszthelyi, T.; Balakrishnan, G.; Offersgaard,
J. F.; Wilbrandt, R.; Barbosa, F.; Buser, U.; Amaudrut, J.; Gescheidt, G.;
Nelsen, S. F. J. Am. Chem. Soc. 2002, 124, 159.
(12) (a) Lambert, C.; No¨ll, G. J. Am. Chem. Soc. 1999, 121, 8434. (b)
Lambert, C.; No¨ll, G. Angew. Chem., Int. Ed. 1998, 37, 2107.
(13) Lindeman, S. V.; Rosokha, S. V.; Sun, D.; Kochi, J. K. J. Am.
Chem. Soc. 2002, 124, 843.
(14) Coropceanu, V.; Malagoli, M.; Andre, J. M.; Bredas, J. L. J. Am.
Chem. Soc. 2002, 124, 10519.
(15) Grevels, F. W.; Kerpen, K.; Klotzbucher, W. E.; McClung, R. E.
D.; Russell, G.; Viotte, M.; Schaffner, K. J. Am. Chem. Soc. 1998, 120,
10423.
(16) Sandstro¨m, J. Dynamic NMR Spectroscopy; Academic Press:
London, 1982.
(17) Robin, M. B.; Day, P. AdV. Inorg. Chem. Radiochem. 1967, 10, 247.
(18) Nishiumi, T.; Higuchi, M.; Yamamoto, K. Macromolecules 2003,
36, 6325.
(19) Richardson, D. E.; Taube, H. Inorg. Chem. 1981, 20, 1278.
(20) (a) Richardson, D. E.; Taube, H. Coord. Chem. ReV. 1984, 60, 107.
(b) Sutton, J. E.; Taube, H. Inorg. Chem. 1981, 20, 3125. (c) de la Rosa,
R.; Chang, P. J.; Salaymeh, F.; Curtis, J. C. Inorg. Chem. 1985, 24, 4229.
(d) Dong, Y.; Hupp, J. T. Inorg. Chem. 1992, 31, 3170.
(21) (a) Londergan, C. H.; Salsman, J. C.; Ronco, S.; Dolkas, L. M.;
Kubiak, C. P. J. Am. Chem. Soc. 2002. 124. 6236. (b) Londergan, C. H.;
Salsman, J. C.; Ronco, S.; Dolkas, L. M.; Kubiak, C. P. Inorg. Chem. 2003,
42, 926.
(22) DeRosa, M. C.; White, C. A.; Evans, C. E. B.; Crutchley, R. J. J.
Am. Chem. Soc. 2001, 123, 1396.
Acknowledgment. This work was partially supported by
Grants-in-Aid for Scientific Research (Nos. 15350073, 15655069)
and the 21st COE program (Keio-LCC) from the Ministry of
Education Science Foundation Culture, a Grant-in-Aid for
CREST from the Science and Technology Agency, and a
Kanagawa Academy of Science and Technology Research Grant
(Project No. 23).
Supporting Information Available: Fitting procedures and
parameters for spectroelectrochemical analysis, CIF file, elec-
trochemical analysis, and additional data. This material is
References and Notes
(1) (a) Barbara, P. F.; Meyer, T. J.; Ratner, M. A. J. Phys. Chem. 1996,
100, 13148. (b) Yamamoto, K.; Taneichi, D. Chem. Lett. 2000, 1, 4. (c)
Higuchi, M.; Ikeda, I.; Hirao, T. J. Org. Chem. 1997, 62, 1072. (d)
Yamamoto, K.; Oyaizu, K.; Tsuchida, E. J. Am. Chem. Soc. 1996, 118,
12665.
(23) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(24) Hariharan, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217.